An adaptive procedure for Fourier estimators: illustration to deconvolution and decompounding - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2019

An adaptive procedure for Fourier estimators: illustration to deconvolution and decompounding

Résumé

We introduce a new procedure to select the optimal cutoff parameter for Fourier density estimators that leads to adaptive rate optimal estimators, up to a logarithmic factor. This adaptive procedure applies for different inverse problems. We illustrate it on two classical examples: deconvolution and decompounding, i.e. non-parametric estimation of the jump density of a compound Poisson process from the observation of n increments of length ∆ > 0. For this latter example, we first build an estimator for which we provide an upper bound for its L 2-risk that is valid simultaneously for sampling rates ∆ that can vanish, ∆ := ∆ n → 0, can be fixed, ∆ n → ∆ 0 > 0 or can get large, ∆ n → ∞ slowly. This last result is new and presents interest on its own. Then, we show that the adaptive procedure we present leads to an adaptive and rate optimal (up to a logarithmic factor) estimator of the jump density.
Fichier principal
Vignette du fichier
DuvalKappus18.pdf (2.65 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01700525 , version 1 (06-02-2018)

Identifiants

Citer

Céline Duval, Johanna Kappus. An adaptive procedure for Fourier estimators: illustration to deconvolution and decompounding. Electronic Journal of Statistics , 2019, 13 (2), pp.3424-3452. ⟨hal-01700525⟩
93 Consultations
90 Téléchargements

Altmetric

Partager

More