Sparse control of Hegselmann-Krause models: Black hole and declustering - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2019

Sparse control of Hegselmann-Krause models: Black hole and declustering

Résumé

This paper elaborates control strategies to prevent clustering effects in opinion formation models. This is the exact opposite of numerous situations encountered in the literature where, on the contrary, one seeks controls promoting consensus. In order to promote declustering, instead of using the classical variance that does not capture well the phenomenon of dispersion, we introduce an entropy-type functional that is adapted to measuring pairwise distances between agents. We then focus on a Hegselmann-Krause-type system and design declustering sparse controls both in finite-dimensional and kinetic models. We provide general conditions characterizing whether clustering can be avoided as function of the initial data. Such results include the description of black holes (where complete collapse to consensus is not avoidable), safety zones (where the control can keep the system far from clustering), basins of attraction (attractive zones around the clustering set) and collapse prevention (when convergence to the clustering set can be avoided).
Fichier principal
Vignette du fichier
BlackSwan_Arxiv.pdf (1.54 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01699261 , version 1 (02-02-2018)
hal-01699261 , version 2 (02-02-2018)

Identifiants

Citer

Benedetto Piccoli, Nastassia Pouradier Duteil, Emmanuel Trélat. Sparse control of Hegselmann-Krause models: Black hole and declustering. SIAM Journal on Control and Optimization, 2019, 57 (4), pp.2628--2659. ⟨10.1137/18M1168911⟩. ⟨hal-01699261v2⟩
664 Consultations
339 Téléchargements

Altmetric

Partager

More