Joint segmentation of multiple images with shared classes: a Bayesian nonparametrics approach - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Joint segmentation of multiple images with shared classes: a Bayesian nonparametrics approach

Résumé

A combination of the hierarchical Dirichlet process (HDP) and the Potts model is proposed for the joint segmenta-tion/classification of a set of images with shared classes. Images are first divided into homogeneous regions that are assumed to belong to the same class when sharing common characteristics. Simultaneously, the Potts model favors configurations defined by neighboring pixels belonging to the same class. This HDP-Potts model is elected as a prior for the images, which allows the best number of classes to be selected automatically. A Gibbs sampler is then designed to approximate the Bayesian estimators, under a maximum a posteriori (MAP) paradigm. Preliminary experimental results are finally reported using a set of synthetic images.
Fichier principal
Vignette du fichier
07551735.pdf (125.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01695100 , version 2 (03-04-2017)
hal-01695100 , version 1 (29-01-2018)

Identifiants

Citer

Jessica Sodjo, Audrey Giremus, Francois Caron, Jean-François Giovannelli, Nicolas Dobigeon. Joint segmentation of multiple images with shared classes: a Bayesian nonparametrics approach. IEEE Statistical Signal Processing Workshop (SSP), Jun 2016, Palma de Majorque, Spain. ⟨10.1109/SSP.2016.7551735⟩. ⟨hal-01695100v1⟩
424 Consultations
318 Téléchargements

Altmetric

Partager

More