On the Uniqueness of Global Multiple SLEs - Archive ouverte HAL
Article Dans Une Revue Annals of Probability Année : 2021

On the Uniqueness of Global Multiple SLEs

Résumé

This article focuses on the characterization of global multiple Schramm–Loewner evolutions (SLE). The chordal SLE describes the scaling limit of a single interface in various critical lattice models with Dobrushin boundary conditions, and similarly, global multiple SLEs describe scaling limits of collections of interfaces in critical lattice models with alternating boundary conditions. In this article, we give a minimal amount of characterizing properties for the global multiple SLEs: we prove that there exists a unique probability measure on collections of pairwise disjoint continuous simple curves with a certain conditional law property. As a consequence, we obtain the convergence of multiple interfaces in the critical Ising, FK-Ising and percolation models.
Fichier principal
Vignette du fichier
AOP1477.pdf (640.95 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01691513 , version 1 (24-01-2018)
hal-01691513 , version 2 (22-11-2021)

Identifiants

Citer

Vincent Beffara, Eveliina Peltola, Hao Wu. On the Uniqueness of Global Multiple SLEs. Annals of Probability, 2021, 49 (1), pp.400-434. ⟨10.1214/20-AOP1477⟩. ⟨hal-01691513v2⟩
160 Consultations
146 Téléchargements

Altmetric

Partager

More