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This article focuses on the characterization of global multiple Schramm–
Loewner evolutions (SLE). The chordal SLE describes the scaling limit of
a single interface in various critical lattice models with Dobrushin bound-
ary conditions, and similarly, global multiple SLEs describe scaling limits of
collections of interfaces in critical lattice models with alternating boundary
conditions. In this article, we give a minimal amount of characterizing prop-
erties for the global multiple SLEs: we prove that there exists a unique prob-
ability measure on collections of pairwise disjoint continuous simple curves
with a certain conditional law property. As a consequence, we obtain the con-
vergence of multiple interfaces in the critical Ising, FK-Ising and percolation
models.

1. Introduction. At the turn of the millennium, O. Schramm introduced random fractal
curves in the plane which he called “stochastic Loewner evolutions” (SLE) [32, 34], and
which have since then been known as Schramm–Loewner evolutions. He proved that these
probability measures on curves are the unique ones that enjoy the following two properties:
their law is conformally invariant and, viewed as growth processes (via Loewner’s theory),
they have the domain Markov property—a memorylessness property of the growing curve.
These properties are natural from the physics point of view, and in many cases, it has been
verified that interfaces in critical planar lattice models of statistical physics converge in the
scaling limit to SLE type curves; see [4, 5, 26, 36, 38, 39] for examples.

In the chordal case, there is a one-parameter family (SLEκ) of such curves, parameterized
by a real number κ ≥ 0, which is believed to be related to universality classes of the critical
models, as well as to the central charges of the corresponding conformal field theories. In this
article, we consider several interacting SLEκ curves, multiple SLEs. We prove in Section 3
that, when κ ∈ (0,4], there exists a unique multiple SLEκ measure on families of curves
with a given connectivity pattern, as detailed in Theorem 1.2 below. Such measures have
already been considered in many works [3, 8, 13, 21, 25], but we have not found a conceptual
approach in the literature, in terms of a minimal amount of characterizing properties in the
spirit of Schramm’s classification.

The results on convergence of a single discrete interface to an SLEκ curve in the scaling
limit are all rather involved. On the other hand, after the characterization of the multiple
SLEs, it is relatively straightforward to extend these convergence results to prove that multiple
interfaces also converge to multiple SLEκ curves. Indeed, the relative compactness of the
interfaces in a suitable topology can be verified with little effort, for example, using results in
[10, 19], and the main problem is then to identify the limit (i.e., to prove that the subsequential
limits are given by a unique collection of random curves).

As an application, we show that the chordal interfaces in the critical Ising model with
alternating boundary conditions converge to the multiple SLEκ with parameter κ = 3, in the
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FIG. 1. Simulation of the critical Ising model with alternating boundary conditions. There are eight marked
points on the boundary of the polygon �δ and, therefore, four interfaces connect the marked points pairwise. We
only illustrate one possible connectivity of the curves (the reader may verify that there are 14 different topological
possibilities).

sense detailed in Proposition 1.3 and Section 4.4. In contrast to the previous work [15] of
K. Izyurov, we work with the global collection of curves and condition on the event that
the interfaces form a given connectivity pattern; see Figure 1 for an illustration. We also
identify the marginal law of one curve in the scaling limit as a weighted chordal SLE3. For
the identification of the scaling limit, we use the known convergence of a single critical Ising
interface to the chordal SLE3 [5] combined with our characterization of the multiple SLE3,
and certain technical estimates to rule out pathological behavior of the curves.

The explicit construction of global multiple SLEκ given in [21, 25, 31], and summarized
in Section 3 of the present article, fails for κ > 4. Nevertheless, we discuss in Section 4 how,
using information from discrete models, one could extend the classification of the multiple
SLEκ (our Theorem 1.2) to the range κ ∈ (4,6]. More precisely, we show that the conver-
gence of a single interface in the critical random-cluster model combined with a Russo–
Seymour–Welsh type (RSW) estimate implies the existence and uniqueness of a global mul-
tiple SLEκ , where κ ∈ (4,6] is related to the cluster weight q via equation (4.2). In the special
case of the FK-Ising model (q = 2), thanks to the results of [5, 7, 10, 19, 40], we do obtain
the convergence of any number of chordal interfaces to the unique multiple SLE16/3; see
Proposition 1.4. For general κ ∈ (4,6), this result remains conditional on the convergence of
a single interface. The case κ = 6 corresponds to critical percolation, where the convergence
also follows by [4, 38].

1.1. Global multiple SLEs. Throughout, we let � ⊂ C denote a simply connected
domain with 2N distinct points x1, . . . , x2N ∈ ∂� appearing in counterclockwise order
along the boundary on locally connected boundary segments. We call the (2N + 1)-
tuple (�;x1, . . . , x2N) a (topological) polygon. We consider curves in � each of which
connects two points among {x1, . . . , x2N }. These curves can have various planar (i.e.,
noncrossing) connectivities. We describe the connectivities by planar pair partitions α =
{{a1, b1}, . . . , {aN, bN }}, where {a1, b1, . . . , aN, bN } = {1,2, . . . ,2N}. We call such α (pla-
nar) link patterns and denote the set of them by LPN , for each N ≥ 1. Given a link pattern
α ∈ LPN and {a, b} ∈ α, we denote by α/{a, b} the link pattern in LPN−1 obtained by remov-
ing {a, b} from α and then relabeling the remaining indices so that they are the first 2(N − 1)

positive integers.
We let Xsimple(�;x1, x2) denote the set of continuous simple unparameterized curves in

� connecting x1 and x2 such that they only touch the boundary ∂� in {x1, x2}. When κ ∈
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(0,4], the chordal SLEκ curve belongs to this space almost surely. Also, when N ≥ 2, we let
Xα

simple(�;x1, . . . , x2N) denote the set of families (η1, . . . , ηN) of pairwise disjoint curves,
where ηj ∈ Xsimple(�;xaj

, xbj
) for all j ∈ {1, . . . ,N}.

DEFINITION 1.1. Let κ ∈ (0,4]. For N ≥ 2 and for any link pattern α ∈ LPN , we call
a probability measure on the families (η1, . . . , ηN) ∈ Xα

simple(�;x1, . . . , x2N) a global N -
SLEκ associated to α if, for each j ∈ {1, . . . ,N}, the conditional law of the curve ηj given
{η1, . . . , ηN } \ {ηj } is the chordal SLEκ connecting xaj

and xbj
in the connected component

of the domain � \ ⋃
i �=j ηi containing the endpoints xaj

and xbj
of ηj on its boundary.

THEOREM 1.2. Let κ ∈ (0,4] and let (�;x1, . . . , x2N) be a polygon with N ≥ 1. For
any α ∈ LPN , there exists a unique global N -SLEκ associated to α.

The existence part of Theorem 1.2 is already known; see [21, 25, 31]. We briefly review
the construction in Section 3.1. J. Miller and S. Sheffield proved the uniqueness part of The-
orem 1.2 for N = 2 in [28], Theorem 4.1, making use of a coupling of the SLE with the
Gaussian free field. Unfortunately, this proof does not apply1 in general for N ≥ 3 commut-
ing SLEs. In the present article, we first give a different proof for the existence and uniqueness
when N = 2 by a Markov chain argument (in Section 3.2), and then generalize the unique-
ness proof for all N ≥ 3 (in Section 3.3). Our proof also gives exponential convergence rate
for the Markov chain.

Lastly, let us note that Definition 1.1 implies the following cascade property. Suppose
that the collection of random curves (η1, . . . , ηN) ∈ Xα

simple(�;x1, . . . , x2N) has the law of a
global N -SLEκ associated to the link pattern α ∈ LPN . Assume also that {j, j + 1} ∈ α for
some j ∈ {1, . . . ,N}, and let η1 be the curve connecting xj and xj+1. Then the conditional
law of the curves (η2, . . . , ηN) given η1 is the global (N −1)-SLEκ associated to α/{j, j +1}.

1.2. Multiple interfaces in the critical planar Ising model. Next, we consider critical
Ising interfaces in the scaling limit. Assuming that � is bounded, we let discrete domains
(�δ;xδ

1, . . . , x
δ
2N) on the square lattice approximate (�;x1, . . . , x2N) as δ → 0 (we will pro-

vide the details of the approximation scheme in Section 4), and we consider the critical Ising
model (which we also define in Section 4) on �δ with the following alternating boundary
conditions: {⊕ on

(
xδ

2j−1x
δ
2j

)
, for j ∈ {1, . . . ,N},

� on
(
xδ

2j x
δ
2j+1

)
, for j ∈ {0,1, . . . ,N},(1.1)

where (xδ
i x

δ
i+1) stands for the counterclockwise boundary arc from xδ

i to xδ
i+1, with the con-

vention that xδ
2N = xδ

0 and xδ
2N+1 = xδ

1. With the alternating boundary conditions (1.1), in
the configurations of the Ising model, N random interfaces (ηδ

1, . . . , η
δ
N) connect pairwise

the 2N boundary points xδ
1, . . . , x

δ
2N , forming a planar connectivity encoded in a link pattern

ϑδ ∈ LPN . See Figure 1 for an illustration.
To understand the scaling limit of the interfaces, we must specify the topology in which

the convergence of the curves occurs. Thus, we let X denote the set of planar oriented curves,
that is, continuous mappings from [0,1] to C modulo reparameterization. We equip X with
the metric

dist(η, η̃) := inf
ϕ,ϕ̃

sup
t∈[0,1]

∣∣η(
ϕ(t)

) − η̃
(
ϕ̃(t)

)∣∣,
1Another proof (which might be generalizable for N ≥ 3) for the case of two curves recently appeared in a new

Appendix to [30]. However, this proof does not give exponential convergence rate of the Markov chain discussed
in Remark 3.8.
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where the infimum is taken over all increasing homeomorphisms ϕ, ϕ̃ : [0,1] → [0,1]. Then
the metric space (X,d) is complete and separable. On the space Xα

simple(�;x1, . . . , x2N), we
use the metric

dist
(
(η1, . . . , ηN), (η̃1, . . . , η̃N)

) := max
1≤j≤N

dist(ηj , η̃j ).

PROPOSITION 1.3. Let α ∈ LPN . Then, as δ → 0, conditionally on the event {ϑδ = α},
the law of the collection (ηδ

1, . . . , η
δ
N) of critical Ising interfaces converges weakly to the

global N -SLE3 associated to α. In particular, as δ → 0, the law of a single curve ηδ
j in this

collection connecting two points xa and xb converges weakly to a conformal image of the
Loewner chain with driving function given by equation (3.14) in Section 3.4 with κ = 3.

We prove Proposition 1.3 in Section 4.4, where we also define the Ising model and discuss
some of its main features. The key ingredients in the proof are results from [10, 19] for the
relative compactness of the curves, a technical RSW estimate [5] to rule out pathological be-
havior, and convergence of one interface [5] combined with Theorem 1.2 for the identification
of the limit.

1.3. Multiple interfaces in the critical planar FK-Ising model. In Section 4, we also de-
fine and discuss the random-cluster models, whose interfaces conjecturally converge to SLEκ

curves with κ ∈ (4,6]. Using the discrete holomorphic observable, the convergence has been
rigorously proven for the case of the FK-Ising model with κ = 16/3 for a single interface
[5] and two interfaces [20]—we provide with a proof for the general case. Hence, we con-
sider the critical FK-Ising model on �δ with the following alternating boundary conditions
(illustrated in Figure 5):{

wired on
(
xδ

2j−1x
δ
2j

)
, for j ∈ {1, . . . ,N},

free on
(
xδ

2j x
δ
2j+1

)
, for j ∈ {0,1, . . . ,N}.(1.2)

As in the case of the Ising model, N interfaces (ηδ
1, . . . , η

δ
N) connect pairwise the 2N bound-

ary points xδ
1, . . . , x

δ
2N , forming a planar connectivity encoded in a link pattern ϑδ ∈ LPN .

However, this time the scaling limits are not simple curves, and we need to extend the defi-
nition of a global multiple SLEκ to include the range κ ∈ (4,6]. For this, we let X0(�;x, y)

denote the closure of the space Xsimple(�;x, y) in the metric topology of (X,dist). Note that
the curves in X0(�;x, y) may have multiple points but no self-crossings. In particular, for all
κ > 4, the chordal SLEκ curve belongs to this space almost surely.

Then, for each N ≥ 2 and every α = {{a1, b1}, . . . , {aN, bN }} ∈ LPN , we denote by
Xα

0 (�;x1, . . . , x2N) the collection of curves (η1, . . . , ηN) such that, for each j ∈ {1, . . . ,N},
we have ηj ∈ X0(�;xaj

, xbj
) and ηj does not disconnect any two points xa , xb such that

{a, b} ∈ α from each other. Note that Xα
0 (�;x1, . . . , x2N) is not complete. Above, the global

N -SLEκ was defined for κ ∈ (0,4]—we now extend this definition to all κ ∈ (0,8) by re-
placing Xα

simple(�;x1, . . . , x2N) with Xα
0 (�;x1, . . . , x2N) in Definition 1.1. Note that this

definition would actually still formally make sense in the range κ ≥ 8, but since for such
values of κ , the SLEκ process is described by a Peano curve, uniqueness of a multiple SLE
clearly fails, as one can specify the common boundaries of the different curves in an arbitrary
way while preserving the conditional distributions of individual curves.

PROPOSITION 1.4. Theorem 1.2 also holds for κ = 16/3, and for any α ∈ LPN , as δ →
0, conditionally on the event {ϑδ = α}, the law of the collection (ηδ

1, . . . , η
δ
N) of critical FK-

Ising interfaces converges weakly to the global N -SLE16/3 associated to α.
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We prove Proposition 1.4 in Sections 4.2 and 4.3 (the proof is summarized in Section 4.2).
The relative compactness of the curves is similar as in the Ising model. To show that the
scaling limit is a global multiple SLE16/3, we use the convergence of one interface [5] com-
bined with technical analysis using the RSW estimates [10]. To prove the uniqueness of the
limit, we use a Markov chain argument similar to the proof of Theorem 1.2, thereby also
establishing the uniqueness of the global multiple SLEκ for κ = 16/3. To this end, a priori
estimates from the discrete model give us strong enough control of the curves (replacing the
SLE analysis used for Theorem 1.2 in Section 3).

REMARK 1.5. Similar arguments as presented in Sections 4.2 and 4.3 combined with
the results of [4, 38] show that there also exists a unique global multiple SLEκ for κ = 6 with
any given connectivity pattern; and Proposition 1.4 holds for the critical site percolation on
the triangular lattice with κ = 6.

2. Preliminaries. In this section, we give some preliminary results, for use in subsequent
sections. In Section 2.1, we discuss Brownian excursions and the Brownian loop measure.
These concepts are needed frequently in Sections 2 and 3. In Sections 2.2 and 2.3, we define
the chordal SLEκ and study its relationships in different domains via so-called boundary
perturbation properties. In Section 2.4, we give a crucial coupling result for SLEs in different
domains. This coupling is needed in the proof of Theorem 1.2 in Section 3.

2.1. Brownian excursions and Brownian loop measure. We call a polygon (�;x, y) with
two marked points a Dobrushin domain. Given two boundary points x, y ∈ ∂�, we denote
by (yx) the counterclockwise arc of ∂� from y to x. Also, if U ⊂ � is a simply connected
subdomain that agrees with � in neighborhoods of x and y, we say that U is a Dobrushin sub-
domain of �. For a Dobrushin domain (�;x, y), the Brownian excursion measure ν(�; (yx))

is a conformally invariant measure on Brownian excursions in � with their two endpoints on
the arc (yx); see [27], Section 3, for definitions. It is a σ -finite infinite measure, with the
following restriction property: for any Dobrushin subdomain U ⊂ � that agrees with � in a
neighborhood of the arc (yx), we have

ν
(
�; (yx)

)[·1{e⊂U }] = ν
(
U ; (yx)

)[·].(2.1)

For ξ ≥ 0, we call a Poisson point process with intensity ξν(�; (yx)) a Brownian excursion
soup.

Whenever x and y lie on sufficiently regular boundary segments of �, we define the
boundary Poisson kernel H�(x, y) as the unique function which in the upper-half plane
H= {z ∈ C : Im(z) > 0} is given by

HH(x, y) = |y − x|−2, x, y ∈R

and which in � is defined via conformal covariance: for any conformal map ϕ : � → ϕ(�),
we have

H�(x, y) = ∣∣ϕ′(x)ϕ′(y)
∣∣Hϕ(�)

(
ϕ(x),ϕ(y)

)
,(2.2)

and in particular, H�(x, y) := |ϕ′(x)ϕ′(y)|HH(ϕ(x), ϕ(y)), with ϕ : � →H.

LEMMA 2.1. Let (�;x, y) be a Dobrushin domain with x, y on sufficiently regular
boundary segments. Let U,V ⊂ � be two Dobrushin subdomains that agree with � in a
neighborhood of the arc (yx). Then we have

H�(x, y) ≥ HU(x, y),(2.3)

H�(x, y)HU∩V (x, y) ≥ HU(x, y)HV (x, y).(2.4)
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PROOF. The inequality (2.3) follows from (2.2). To prove (2.4), let P be a Brownian
excursion soup with intensity ν(�; (yx)). The union of excursions in P satisfies the so-called
one-sided restriction property (see, e.g., [41], Theorem 8), which implies that P[e ⊂ U ∀e ∈
P] = |ϕ′(x)ϕ′(y)|, where ϕ is any conformal map from U onto � fixing x and y. Combining
with (2.2), we obtain

P[e ⊂ U ∀e ∈ P] = HU(x, y)

H�(x, y)
.

Now, denote by PV the collection of excursions in P that are contained in V . By (2.1), we
know that PV is a Brownian excursion soup with intensity ν(V ; (yx)). The property (2.4)
now follows from

HU∩V (x, y)

HV (x, y)
= P[e ⊂ U ∀e ∈PV ] ≥ P[e ⊂ U ∀e ∈ P] = HU(x, y)

H�(x, y)
.

This concludes the proof. �

The Brownian loop measure μ(�) is a conformally invariant measure on unrooted Brown-
ian loops in �; see, for example, [27], Sections 3 and 4, for definitions. It is a σ -finite infinite
measure, which has the following restriction property: for any subdomain U ⊂ �, we have

μ(�)[·1{⊂U }] = μ(U)[·].
For ξ ≥ 0, we call a Poisson point process with intensity ξμ(�) a Brownian loop soup. This
notion will be needed in Section 2.4.

Given two disjoint subsets V1,V2 ⊂ �, we denote by μ(�;V1,V2) the Brownian loop
measure of loops in � that intersect both V1 and V2. In other words,

μ(�;V1,V2) := μ{ :  ⊂ �, ∩ V1 �=∅,  ∩ V2 �= ∅}.
If V1, V2 are at positive distance from each other, both of them are closed, and at least
one of them is compact, then we have 0 ≤ μ(�;V1,V2) < ∞. Furthermore, the measure
μ(�;V1,V2) is conformally invariant: we have μ(ϕ(�);ϕ(V1), ϕ(V2)) = μ(�;V1,V2) for
any conformal map ϕ : � → f (�).

For n disjoint subsets V1, . . . , Vn of �, we denote by μ(�;V1, . . . , Vn) the Brownian loop
measure of loops in � that intersect all of V1, . . . , Vn. Again, provided that Vj are closed and
at least one of them is compact, μ(�;V1, . . . , Vn) is finite. This quantity will be needed in
Section 3.

2.2. Loewner chains and the Schramm–Loewner evolution. An H-hull is a compact sub-
set K of H such that H \ K is simply connected. Riemann’s mapping theorem implies that
for any hull K , there exists a unique conformal map gK from H \ K onto H such that
limz→∞ |gK(z) − z| = 0. Such a map gK is called the conformal map from H \ K onto
H normalized at ∞. By standard estimates of conformal maps, the derivative of this map
satisfies

0 < g′
K(x) ≤ 1 for all x ∈ R \ K.

In fact, this derivative can be viewed as the probability that the Brownian excursion in H from
x to ∞ avoids the hull K ; see [23].

Consider a family of conformal maps (gt , t ≥ 0) which solve the Loewner equation: for
each z ∈ H,

∂tgt (z) = 2

gt (z) − Wt

and g0(z) = z,
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where (Wt , t ≥ 0) is some real-valued continuous function, called the driving function. Also,
denote Kt := {z ∈ H : Tz ≤ t}, where

Tz := sup
{
t ≥ 0 : inf

s∈[0,t]
∣∣gs(z) − Ws

∣∣ > 0
}

is the swallowing time of the point z. Then gt is the unique conformal map from Ht := H\Kt

onto H normalized at ∞. The collection of H-hulls (Kt , t ≥ 0) associated with such maps
is called a Loewner chain. We say that (Kt , t ≥ 0) is generated by the continuous curve
(γ (t), t ≥ 0) if, for any t ≥ 0, the unbounded connected component of H \ γ [0, t] coincides
with Ht = H \ Kt .

In this article, we are concerned with particular hulls generated by curves. For κ ≥ 0, the
random Loewner chain (Kt , t ≥ 0) driven by Wt = √

κBt , where (Bt , t ≥ 0) is a standard
Brownian motion, is called the (chordal) Schramm–Loewner Evolution, or SLEκ , in H from
0 to ∞. S. Rohde and O. Schramm proved in [32] that this Loewner chain is almost surely
generated by a continuous transient curve γ , with |γ (t)| → ∞ as t → ∞, the SLEκ curve.
This random curve exhibits the following phase transitions in the parameter κ : when κ ∈
[0,4], it is a simple curve; whereas when κ > 4, it has self-touchings, being space-filling if
κ ≥ 8. The law of the SLEκ curve is a probability measure on the space X0(H;0,∞), and
we denote it by P(H;0,∞).

By conformal invariance, we can define the SLEκ probability measure P(�;x, y) in any
simply connected domain � with two marked boundary points x, y ∈ ∂� (around which ∂�

is locally connected) via pushforward of a conformal map: if γ ∼ P(H;0,∞), then we have
ϕ(γ ) ∼ P(�;x, y), where ϕ : H → � is any conformal map such that ϕ(0) = x and ϕ(∞) =
y. In fact, by the results of O. Schramm [34], the (SLEκ)κ≥0 are the only probability measures
on curves γ ∈ X0(�;x, y) satisfying conformal invariance and the following domain Markov
property: given an initial segment γ [0, τ ] of the SLEκ curve γ ∼ P(�;x, y) up to a stopping
time τ , the conditional law of the remaining piece γ [τ,∞) is the law P(� \ Kτ ;γ (τ), y) of
the SLEκ curve in the complement of the hull Kτ of the initial segment from the tip γ (τ)

to y.

2.3. Boundary perturbation for SLEs. The chordal SLEκ curve γ ∼ P(�;x, y) has a
natural boundary perturbation property, where its law in a Dobrushin subdomain of � is
given by weighting by a factor involving the Brownian loop measure and the boundary Pois-
son kernel. More precisely, when κ ∈ (0,4], the SLEκ is a simple curve only touching the
boundary at its endpoints, and its law in the subdomain is absolutely continuous with respect
to its law in �, as we state in the next Lemma 2.2. However, for κ > 4, we cannot have such
an absolute continuity property, because the SLEκ has a positive chance to hit the boundary
of �. Nevertheless, in Lemma 2.3 we show that if we restrict the two processes in a smaller
domain, then we retain the absolute continuity for κ ∈ (4,8).

Throughout this article, we use the following real parameters, depending on κ > 0:

h = 6 − κ

2κ
and c = (3κ − 8)(6 − κ)

2κ
.(2.5)

LEMMA 2.2. Let κ ∈ (0,4]. Let (�;x, y) be a Dobrushin domain and U ⊂ � a Do-
brushin subdomain. Then the SLEκ in U connecting x and y is absolutely continuous with
respect to the SLEκ in � connecting x and y, with Radon–Nikodym derivative given by

dP(U ;x, y)

dP(�;x, y)
(γ ) =

(
H�(x, y)

HU(x, y)

)h

1{γ⊂U } exp
(
cμ(�;γ,� \ U)

)
.
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PROOF. See [23], Section 5, and [21], Proposition 3.1. �

The next lemma is a consequence of results in [23, 27]. We briefly summarize the proof.

LEMMA 2.3. Let κ ∈ (4,8). Let (�;x, y) be a Dobrushin domain. Let �L ⊂ U ⊂ � be
Dobrushin subdomains such that �L and � agree in a neighborhood of the arc (yx) and
dist(�L,� \ U) > 0. Then we have

1{γ⊂�L}
dP(U ;x, y)

dP(�;x, y)
(γ ) =

(
H�(x, y)

HU(x, y)

)h

1{γ⊂�L} exp
(
cμ(�;γ,� \ U)

)
.

PROOF. By conformal invariance, we may assume that the domain under consideration
is (�;x, y) = (H;0,∞). Let γ ∼ P(H;0,∞), let (Wt , t ≥ 0) be its driving function, and
(gt , t ≥ 0) the corresponding conformal maps. Let ϕ be the conformal map from U onto H

normalized at ∞. On the event {γ ⊂ �L}, define T to be the first time when γ disconnects
H \ U from ∞.

Denote by Kt the hull of γ [0, t]. For t < T , let g̃t be the conformal map from H \ ϕ(Kt)

onto H, and let ϕt be the conformal map from gt (U \ Kt) onto H, both normalized at ∞.
Then we have g̃t ◦ ϕ = ϕt ◦ gt . Now we define, for t < T ,

Mt := ϕ′
t (Wt)

h exp
(
−c

∫ t

0

Sϕs(Ws)

6
ds

)
,

where Sf is the Schwarzian derivative.2 It was proved in [23], Proposition 5.3, that Mt is a
local martingale. Furthermore, using Itô’s formula, one can show that the law of γ weighted
by Mt is P(U ;0,∞) up to time t . Also, it follows from [24], Proposition 5.22, (see also [27],
Section 7) that

−
∫ t

0

Sϕs(Ws)

6
ds = μ

(
H;γ [0, t],H \ U

)
.

Now, on the event {γ ⊂ �L}, there exists a constant ε = ε(H,�L,U) > 0 such that for
t < T , we have ε ≤ ϕ′

t (Wt) ≤ 1. When κ ∈ (4,6], we have h ≥ 0 and c ≥ 0, and thus, on the
event {γ ⊂ �L}, we have Mt ≤ exp(cμ(H;�L,H \ U)). When κ ∈ (6,8), we have h ≤ 0
and c ≤ 0, and in this case, we have Mt ≤ εh. In conclusion, in either case, (Mt , t < T ) is
uniformly bounded on the event {γ ⊂ �L}, and as t → T , we have ϕ′

t (Wt) → 1 almost surely,
so

Mt → MT := exp
(
cμ

(
H;γ [0, T ],H \ U

))
, as t → T .

The assertion now follows by taking into account that M0 = ϕ′(0)h and recalling the identity
(2.2). �

2.4. A crucial coupling result for SLEs. We finish this preliminary section with a result
from [42], which says that we can construct SLEs from the Brownian loop soup and the
Brownian excursion soup. This gives a coupling of SLEs in two Dobrushin domains U ⊂ �,
which will be crucial in our proof of Theorem 1.2 (for Lemma 3.5 for κ ∈ [8/3,4]).

Let (�;x, y) be a Dobrushin domain. Let L be a Brownian loop soup with intensity cμ(�),
and P a Brownian excursion soup with intensity hν(�; (yx)), where c = c(κ) and h = h(κ)

are defined in (2.5) and κ ∈ [8/3,4]. (Note that for κ ∈ [8/3,4], we have c ∈ [0,1] and
h ∈ [1/4,5/8].)

2The Schwarzian derivative of f is defined by Sf (z) := f ′′′(z)
f ′(z) − 3f ′′(z)2

2f ′(z)2 .
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FIG. 2. In the left panel, γ0 is the right boundary of all Brownian excursions in P . In the middle panel, � is the
family of all outer boundaries of the outermost elements of the clusters of Brownian loops in L. In the right panel,
γ is the right boundary of the union of γ0 and all loops in � that intersect γ0. By [42], Theorem 1.1, we find that
γ ∼ P(�;x, y).

We say that two loops  and ′ in L belong to the same cluster if there exists a finite chain
of loops 0, . . . , n in L such that 0 = , n = ′, and j ∩ j−1 �= ∅ for all j ∈ {1, . . . , n}.
We denote by C the family of all closures of the loop-clusters and by � the family of all outer
boundaries of the outermost elements of C. Then � forms a collection of disjoint simple
loops, called the CLEκ for κ ∈ (8/3,4]; see [37].

Finally, we define γ0 to be the right boundary of the union of all excursions e ∈ P and γ

the boundary of the union of γ0 and all loops in � that it intersects, as illustrated in Figure 2.

LEMMA 2.4. Let κ ∈ [8/3,4]. Let (�;x, y) be a Dobrushin domain and define L, P , �,
γ0, and γ as above. Then γ has the law of the SLEκ in � connecting x and y.

PROOF. When κ = 8/3, the curve γ is the same as γ0, and it satisfies the so-called one-
sided restriction property, which uniquely identifies its law with the SLE8/3 by [23], Theo-
rem 8.4, and [41], Theorem 8. For κ ∈ (8/3,4], the assertion was proved in [42], Theorem 1.1.

�

From Lemma 2.4, we see that SLEκ curves in different domains can be coupled in the
following way. Let U ⊂ � by a Dobrushin subdomain that agrees with � in a neighborhood
of the arc (yx). Take L, P , �, γ0 and γ as in the above lemma. Let PU and LU , respectively,
be the collections of excursions in P and loops in L that are contained in U . Define η0 to be
the right boundary of the union of all excursions e ∈ PU , define �U to be the collection of all
outer boundaries of the outermost clusters of LU and η to be the right boundary of the union
of η0 and all loops in �U that it intersects.

COROLLARY 2.5. Let κ ∈ [8/3,4]. Let (�;x, y) be a Dobrushin domain and U ⊂ � a
Dobrushin subdomain that agrees with � in a neighborhood of the arc (yx). There exists a
coupling (γ, η) of γ ∼ P(�;x, y) and η ∼ P(U ;x, y) such that, almost surely, η stays to the
left of γ and

P[η = γ ] = P[γ ⊂ U ].
PROOF. Lemma 2.4 and the above paragraph give the sought coupling. �

REMARK 2.6. The coupling (γ, η) of Corollary 2.5 is the one which maximizes the
probability P[η = γ ].
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3. Global multiple SLEs. This section concerns the existence and uniqueness of global
multiple SLEκ measures for κ ∈ (0,4]. Such global N -SLEs associated to all link patterns
α ∈ LPN and all κ ∈ (0,4] have been constructed in [21, 25, 31]. In Section 3.1, we briefly
recall this construction, which immediately gives the existence part of Theorem 1.2. We prove
the uniqueness part of Theorem 1.2 in Sections 3.2 and 3.3.

3.1. Construction of global multiple SLEs for κ ≤ 4. Fix a polygon (�;x1, . . . , x2N).
For a link pattern α = {{a1, b1}, . . . , {aN, bN }} ∈ LPN , we let Pα denote the product measure
of N independent chordal SLEκ curves,

Pα :=
N⊗

j=1

P(�;xaj
, xbj

),

and Eα the expectation with respect to Pα . A global N -SLEκ associated to α can be con-
structed as the probability measure Q#

α = Q#
α(�;x1, . . . , x2N) which is absolutely continu-

ous with respect to Pα with explicit Radon–Nikodym derivative given in (3.1) below. This
formula involves a combinatorial expression mα of Brownian loop measures, obtained by
an inclusion-exclusion procedure that depends on α. More precisely, for a configuration
(η1, . . . , ηN) ∈ Xα

0 (�;x1, . . . , x2N), we define

mα(�;η1, . . . , ηN) := ∑
c.c. C of �\{η1,...,ηN }

m(C),

where the sum is over all the connected components (c.c.) of the complement of the curves,
and

m(C) := ∑
i1,i2∈B(C),

i1 �=i2

μ(�;ηi1, ηi2) − ∑
i1,i2,i3∈B(C),
i1 �=i2 �=i3 �=i1

μ(�;ηi1, ηi2, ηi3)

+ · · · + (−1)pμ(�;ηj1, . . . , ηjp)

is a combinatorial expression associated to the c.c. C, where

B(C) := {
j ∈ {1, . . . ,N} : ηj ⊂ ∂C

} = {j1, . . . , jp}
denotes the set of indices j for which the curve ηj is a part of the boundary of C. Now, we
define the probability measure Q#

α via

dQ#
α

dPα

(η1, . . . , ηN) = Rα(�;η1, . . . , ηN)

Eα[Rα(�;η1, . . . , ηN)] ,

where Rα(�;η1, . . . , ηN) := 1{ηj∩ηk=∅ ∀j �=k} exp
(
cmα(�;η1, . . . , ηN)

)
.

(3.1)

By [31], Proposition 3.3, this measure satisfies the defining property of a global multiple
SLEκ , stated in Definition 1.1. Also, as observed in [31], equation (3.6), the expectation of
Rα defines a conformally invariant and bounded function of the marked boundary points:

0 < fα(�;x1, . . . , x2N) := Eα

[
Rα(�;η1, . . . , ηN)

] ≤ 1.

If (�;x1, . . . , x2N) is a polygon and U ⊂ � a simply connected subdomain that agrees
with � in neighborhoods of x1, . . . , x2N , we say that U is a subpolygon of �. When the
marked points x1, . . . , x2N lie on sufficiently regular boundary segments of �, we may define,
for all α ∈ LPN , the functions

Zα(�;x1, . . . , x2N) := fα(�;x1, . . . , x2N)
∏

{a,b}∈α

H�(xa, xb)
h,(3.2)
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where H� is the boundary Poisson kernel introduced in Section 2.1. Since 0 < fα ≤ 1, we
see that

0 <Zα(�;x1, . . . , x2N) ≤ ∏
{a,b}∈α

H�(xa, xb)
h.(3.3)

The functions Zα are called pure partition functions of multiple SLEs. Explicit formulas for
them have been obtained when κ = 2 [18], Theorem 4.1, and κ = 4 [31], Theorem 1.5. For
other values of κ ∈ (0,8), formulas in (complicated) integral form have been found in [11,
22].

The multiple SLE probability measure Q#
α has a useful boundary perturbation property. It

serves as an analogue of Lemma 2.2 in our proof of Theorem 1.2.

PROPOSITION 3.1 ([31], Proposition 3.4). Fix κ ∈ (0,4], and let (�;x1, . . . , x2N) be
a polygon and U ⊂ � a subpolygon. Then, the probability measure Q#

α(U ;x1, . . . , x2N) is
absolutely continuous with respect to Q#

α(�;x1, . . . , x2N), with Radon–Nikodym derivative

dQ#
α(U ;x1, . . . , x2N)

dQ#
α(�;x1, . . . , x2N)

(η1, . . . , ηN)

= Zα(�;x1, . . . , x2N)

Zα(U ;x1, . . . , x2N)
1{ηj⊂U ∀j} exp

(
cμ

(
�;� \ U,

N⋃
j=1

ηj

))
.

Moreover, if κ ≤ 8/3 and x1, . . . , x2N lie on sufficiently regular boundary segments of �, then
we have

Zα(�;x1, . . . , x2N) ≥ Zα(U ;x1, . . . , x2N).(3.4)

3.2. Uniqueness for a pair of commuting SLEs. Next, we prove that the global 2-SLEκ

measures are unique. This result was proved by J. Miller and S. Sheffield [28], Theorem 4.1,
using a coupling of the SLEs with the Gaussian free field (GFF). We present another proof
not using this coupling. Our proof also generalizes to the case of N ≥ 3 commuting SLE
curves, whereas couplings with the GFF seem not to be useful in that case.

In this section, we focus on polygons with N = 2. We call such a polygon (�;x1, x2, x3,

x4) a quad. Because the two connectivities α ∈ LP2 of the curves are obtained from each
other by a cyclic change of labeling of the marked boundary points, we may without loss
of generality consider global 2-SLEs associated to α = {{1,4}, {2,3}}. Hence, throughout
this section we consider pairs (ηL, ηR) of simple curves such that ηL ∈ X0(�;xL, yL)

and ηR ∈ X0(�;xR, yR), with ηL ∩ ηR = ∅. We denote the space of such pairs by
X0(�;xL, xR, yR, yL). Now, a probability measure on these pairs (ηL, ηR) of curves is a
global 2-SLEκ if the conditional law of ηL given ηR is that of the SLEκ connecting xL and
yL in the connected component of � \ ηR containing xL and yL on its boundary, and vice
versa.

PROPOSITION 3.2. For any κ ∈ (0,4], there exists a unique global 2-SLEκ on the space
X0(�;xL, xR, yR, yL).

COROLLARY 3.3. Let κ ∈ (0,4]. For any α ∈ LP2, there exists a unique global 2-SLEκ

associated to α.

PROOF. The two connectivities α ∈ LP2 of the curves are obtained from each other by
a cyclic change of labeling of the marked boundary points x1, x2, x3, x4. Thus, the assertion
follows from Proposition 3.2. �
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We prove Proposition 3.2 in the end of this section, after some technical lemmas. The idea
is to show that the global 2-SLEκ is the unique stationary measure of a Markov chain, which
at each discrete time resamples one of the two curves according to its conditional law given
the other one. In fact, the existence part is already well known (see, e.g., [21] and Section 3.1
of the present article), so we only need to prove the uniqueness. Nevertheless, as pointed
out by the referee, our Markov chain coupling argument actually gives both the uniqueness
and existence of the stationary measure, thanks to the following special case of the Doeblin
condition.

LEMMA 3.4. Let P be a Markov kernel on a measurable space E satisfying uniform
coupling in the sense that there exists θ ∈ (0,1) such that the total variation distance between
images is uniformly bounded as

(3.5) sup
x,y∈E

‖δxP − δyP‖TV ≤ θ.

Then there exists a unique P -stationary probability measure P, and for every x ∈ E, the
Markov chain of kernel P starting at x converges in distribution to P.

PROOF. The key consequence of the uniform coupling (3.5) is that, whenever P1 and P2
are two probability measures on E, we have the upper bound ‖P1P − P2P‖TV ≤ θ‖P1 −
P2‖TV. Applying this to two stationary measures P1 and P2 readily implies the uniqueness.
Now, let {Xn} be a Markov chain of kernel P starting from x ∈ E, and denote by Pn the law
of Xn, that is, Pn = δxP

n. Then, for all 0 ≤ n ≤ m, we have

‖Pn − Pm‖TV = ∥∥δxP
n − Pm−nP

n
∥∥

TV ≤ θn‖δx − Pm−n‖TV ≤ θn,

so the sequence {Pn} is Cauchy for the total variation distance. Thus, by the completeness
of the space of measures, it converges to a limit P which is P -stationary, thus showing the
existence. �

The next key Lemmas 3.5 and 3.6 are needed in order to establish the uniform coupling
for Lemma 3.4. The first one, Lemma 3.5, is crucial: the chordal SLEκ in � always has a
uniformly positive probability of staying in a subdomain of � in the following sense.

LEMMA 3.5. Let κ ∈ (0,4]. Let (�;x, y) be a Dobrushin domain. Let �L,U ⊂ � be
Dobrushin subdomains such that �L, U , and � agree in a neighborhood of the arc (yx).
Suppose η ∼ P(U ;x, y). Then there exists a constant θ = θ(�,�L) > 0 independent of U

such that P[η ⊂ �L] ≥ θ .

PROOF. We prove the lemma separately for κ ∈ [8/3,4] and κ ∈ (0,8/3]. For the former
case, we make use of the coupling from Section 2.4. For the latter, technically easier case,
we use properties of the Brownian loop measure from Section 2.1 and the SLE boundary
perturbation property from Section 2.3.

When κ ∈ [8/3,4], we have c ≥ 0 by (2.5). Suppose γ ∼ P(�;x, y) and denote by Dη

(resp. Dγ ) the connected component of U \ η (resp. � \ γ ) with (yx) on its boundary. By
Corollary 2.5, there exists a coupling of η and γ such that Dη ⊂ Dγ . Therefore, we have
P[η ⊂ �L] ≥ P[γ ⊂ �L] > 0. This gives the assertion for κ ∈ [8/3,4] with θ(�,�L) =
P[γ ⊂ �L] > 0.

When κ ∈ (0,8/3], we have c ≤ 0 by (2.5). Lemma 2.2 gives

P
[
η ⊂ �L] =

(
H�(x, y)

HU(x, y)

)h

E
[
1{γ⊂�L∩U} exp

(
cμ(�;γ,� \ U)

)]
.(3.6)
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Note that, on the event {γ ⊂ �L ∩ U}, we have

μ
(
�;γ,� \ (

�L ∩ U
))

= μ(�;γ,� \ U) + μ
(
�;γ,� \ �L) − μ

(
�;γ,� \ �L,� \ U

)
(3.7)

= μ(�;γ,� \ U) + μ
(
U ;γ,U \ �L)

.

Combining (3.6) and (3.7) and using Lemmas 2.1 and 2.2, we obtain

P
[
η ⊂ �L] =

(
H�(x, y)

HU(x, y)

)h

E
[
1{γ⊂�L∩U} exp

(
cμ(�;γ,� \ U)

)]
≥

(
H�(x, y)

HU(x, y)

)h

E
[
1{γ⊂�L∩U} exp

(
cμ

(
�;γ,� \ (

�L ∩ U
)))]

=
(

H�L∩U(x, y)

HU(x, y)

)h

≥
(

H�L(x, y)

H�(x, y)

)h

.

This gives the assertion for κ ∈ (0,8/3] with the lower bound

θ
(
�,�L) =

(
H�L(x, y)

H�(x, y)

)h

> 0. �

Next, we prove that one can couple two SLEs in two Dobrushin subdomains of � in such
a way that their realizations agree with a uniformly positive probability.

LEMMA 3.6. Let κ ∈ (0,8). Let (�;x, y) be a Dobrushin domain. Let �L ⊂ V ⊂ U ,
Ũ ⊂ � be Dobrushin subdomains such that �L and � agree in a neighborhood of the arc
(yx) and dist(�L,�\V ) > 0. Suppose η ∼ P(U ;x, y) and η̃ ∼ P(Ũ ;x, y). Then there exists
a coupling (η, η̃) such that P[η = η̃ ⊂ �L] ≥ θ , where the constant θ = θ(�,�L,V ) > 0 is
independent of U and Ũ .

PROOF. First, we show that there exists a constant p0 = p0(�,�L,V ) > 0, independent
of U and Ũ , such that P[η ⊂ �L] ≥ p0. This is true for κ ≤ 4 by Lemma 3.5, so it remains
to treat the case κ ∈ (4,8). For this, we use the SLE boundary perturbation property from
Section 2.3.

Let γ ∼ P(�;x, y). By Lemma 2.3, we have

P
[
η ⊂ �L] =

(
H�(x, y)

HU(x, y)

)h

E
[
1{γ⊂�L} exp

(
cμ(�;γ,� \ U)

)]
.

When κ ∈ (4,6], we have c ≥ 0 and h ≥ 0 by (2.5). Combining this with the inequality (2.3),
we obtain

P
[
η ⊂ �L] ≥ P

[
γ ⊂ �L]

.

On the other hand, when κ ∈ (6,8), then (2.5) implies that c ≤ 0 and h ≤ 0. On the event
{γ ⊂ �L}, we have μ(�;γ,� \ U) ≤ μ(�;�L,� \ V ), so combining with (2.3), we obtain

P
[
η ⊂ �L] ≥

(
H�(x, y)

HV (x, y)

)h

exp
(
cμ

(
�;�L,� \ V

))
P

[
γ ⊂ �L]

.

In either case, we have P[η ⊂ �L] ≥ p0 with p0 = p0(�,�L,V ) > 0, independently of U

and Ũ , as claimed.
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Next, we consider the relation between the two SLEκ curves η̃ and η. Using Lemmas 2.2
and 2.3, we see that the law of η̃ restricted to {η̃ ⊂ �L} is absolutely continuous with respect
to the law of η restricted to {η ⊂ �L}, and the Radon–Nikodym derivative is given by

R(η) :=
(

HU(x, y)

H
Ũ

(x, y)

)h

1{η⊂�L} exp
(
cμ(U ;η,U \ Ũ ) − cμ(Ũ ;η, Ũ \ U)

)
.

Now, the monotonicity property (2.3) shows that

HV (x, y)

H�(x, y)
≤ HU(x, y)

H
Ũ

(x, y)
≤ H�(x, y)

HV (x, y)
.

Also, because �L ⊂ V ⊂ U , Ũ ⊂ �, we see that on the event {η ⊂ �L}, we have

−μ
(
�;�L,� \ V

) ≤ μ(U ;η,U \ Ũ ) − μ(Ũ ;η, Ũ \ U) ≤ μ
(
�;�L,� \ V

)
.

These facts imply that R(η) ≥ 1{η⊂�L}ε, where ε = ε(�,�L,V ) > 0 is independent of U

and Ũ .
Now, denote the probability P[η ⊂ �L] by p. We conclude that the total variation distance

of the law of η̃ restricted to {η̃ ⊂ �L} and the law of η restricted to {η ⊂ �L} is bounded
from above by

E
[(

1 − R(η)
)+1{η⊂�L}

] ≤ p − pε.

Thus, there exists a coupling (η̃, η) such that P[η̃ = η ⊂ �L] ≥ pε. From the first part of the
proof, we see that p ≥ p0(�,�L,V ). This proves the asserted result. �

It is important that the bounds in the technical Lemmas 3.5 and 3.6 are uniform over the
domains U and Ũ . In [28], Lemma 4.2, the authors proved a seemingly similar result, but they
only showed that there exists a coupling (η, η̃) such that P[η = η̃] > 0, whereas in Lemma 3.6
we proved that P[η = η̃] ≥ θ with the constant θ uniform over U and Ũ .

Let us also emphasize that the assumption in Lemma 3.5 is �L,U ⊂ �, while the assump-
tion in Lemma 3.6 is �L ⊂ U ⊂ �. Lemma 3.5 is the key point in the proof of the uniqueness
in Proposition 3.2, as it guarantees that there is a uniformly positive probability to couple two
Markov chains for any initial values. In order to extend the proof of Proposition 3.2 for the
range κ ∈ (4,8), Lemma 3.5 has to be extended to this range.

REMARK 3.7. It is also worthwhile to discuss the optimal value of the constant θ in
Lemmas 3.5 and 3.6. When κ ∈ [8/3,4], we know this optimal value exactly: namely, from
the proof of Lemma 3.5, we see that the optimal constant θ = θ(�,�L) equals P[γ ⊂ �L],
the probability of the SLEκ curve γ ∼ P(�;x, y) to stay in �L. Also, in Lemma 3.6, if κ ∈
[8/3,4], then we can use the coupling of Corollary 2.5, which gives the optimal constant θ =
θ(�,�L,V ) = P[γ ⊂ �L]. In particular, this constant does not depend on V , so Lemma 3.6
actually holds for all �L ⊂ U , Ũ ⊂ �.

Now, we are ready to prove Proposition 3.2.

PROOF OF PROPOSITION 3.2. By conformal invariance, it suffices to consider the do-
main � = [0, ] × [0,1] with marked boundary points xL = (0,0), xR = (,0), yR = (,1),
yL = (0,1). We define a Markov chain on pairs of curves (ηL, ηR) ∈ X0(�;xL, xR, yR, yL)

as follows (see also Figure 3). Given a configuration (ηL
n , ηR

n ) ∈ X0(�;xL, xR, yR, yL), we
pick i ∈ {L,R} uniformly and resample ηi

n+1 according to the conditional law given the other
curve. We will prove that this Markov chain has a unique stationary measure.
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FIG. 3. In the left panel, the two gray parts indicate �L and �R and the two red curves ηL
0 and ηR

0 . In the right

panel, given ηR
1 = ηR

0 , we sample ηL
1 as the SLEκ in the gray domain between xL and yL. Lemma 3.5 guarantees

that P[ηL
1 ⊂ �L|ηR

1 ] ≥ θ1. Then we set ηL
2 = ηL

1 , and hence, P[ηL
2 ⊂ �L] ≥ θ1.

Take two initial configurations (ηL
0 , ηR

0 ) and (η̃L
0 , η̃R

0 ). We will show that there exists a
constant p0 > 0, independent of the initial configurations, and a coupling of (ηL

4 , ηR
4 ) and

(η̃L
4 , η̃R

4 ) such that

P
[(

ηL
4 , ηR

4
) = (

η̃L
4 , η̃R

4
)] ≥ p0.(3.8)

As depicted in Figure 3, we denote �L = [0, /3] × [0,1] and �R = [2/3, ] × [0,1], and
we denote by θ1 = θ(�,�L) = θ(�,�R) the constant obtained from Lemma 3.5. Given
an initial configuration (ηL

0 , ηR
0 ) ∈ X0(�;xL, xR, yR, yL), we sample ηL

1 according to the
conditional law and set ηR

1 = ηR
0 . Then we sample ηR

2 according to the conditional law and
set ηL

2 = ηL
1 . This operation has probability 1/4. Knowing this sampling order, Lemma 3.5

gives (see Figure 3)

P
[
ηL

2 ⊂ �L] ≥ θ1 and P
[
ηR

2 ⊂ �R|ηL
2
] ≥ θ1.

Thus, for any initial configurations, we have the uniform bound

P
[
ηL

2 ⊂ �L,ηR
2 ⊂ �R] ≥ 1

4
θ2

1 .(3.9)

Now, suppose that we have two initial configurations (ηL
0 , ηR

0 ) and (η̃L
0 , η̃R

0 ), and we sample
(ηL

2 , ηR
2 ) and (η̃L

2 , η̃R
2 ) independently. From (3.9), we see that

P
[
ηL

2 ⊂ �L, η̃L
2 ⊂ �L,ηR

2 ⊂ �R, η̃R
2 ⊂ �R] ≥ 1

16
θ4

1 .

Then, given (ηL
2 , ηR

2 , η̃L
2 , η̃R

2 ), we resample ηL
3 and η̃L

3 according to the conditional law and
set ηR

3 = ηR
2 and η̃R

3 = η̃R
2 . Lemma 3.6 guarantees that there exists a coupling such that the

probability of the event {ηL
3 = η̃L

3 ⊂ �L} is at least θ2 > 0, independently of (ηL
2 , ηR

2 , η̃L
2 , η̃R

2 )

as long as {ηR
2 , η̃R

2 ⊂ �R}. Finally, given (ηL
3 , ηR

3 , η̃L
3 , η̃R

3 ), we resample ηR
4 and η̃R

4 according
to the conditional law and set ηL

4 = ηL
3 and η̃L

4 = η̃L
3 . Similarly, there exists a coupling such

that the probability of {ηR
4 = η̃R

4 ⊂ �R} is at least θ2 as long as {ηL
3 , η̃L

3 ⊂ �L}. In conclusion,
there exists a coupling of (ηL

4 , ηR
4 ) and (η̃L

4 , η̃R
4 ) such that

P
[(

ηL
4 , ηR

4
) = (

η̃L
4 , η̃R

4
)] ≥ 1

64
θ4

1 θ2
2 .

This implies the asserted bound (3.8) with p0 = 1
64θ4

1 θ2
2 .

In conclusion, both the existence and uniqueness of the 2-SLEκ now follow from
Lemma 3.4 applied to the kernel P realizing four steps of the above Markov chain on
X0(�;xL, xR, yR, yL) and (3.8) providing the uniform coupling with θ = 1 − p0. (Further-
more, the Markov chain is mixing, see Remark 3.8.) �
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REMARK 3.8. The Markov chain in the proof of Proposition 3.2 is mixing, that is, there
exists a coupling between (ηL

4n, η
R
4n) and the global 2-SLEκ (ηL, ηR) so that

P
[(

ηL
4n, η

R
4n

) �= (
ηL,ηR)] ≤ (1 − p0)

n.

The above proof also works when the conditional laws of ηR and ηL are variants of the
chordal SLEκ . In particular, we use this argument for certain SLE variants in the proof of
Theorem 1.2 in Section 3.3.

3.3. Uniqueness: General case. Next, we generalize our proof for the global 2-SLEκ to
any number N ≥ 3 of curves, in order to complete the proof of Theorem 1.2. Recall that, for
α ∈ LPN , we denote by Q#

α(�;x1, . . . , x2N) the global N -SLEκ probability measures con-
structed in Section 3.1. In the general case N ≥ 3, in order to establish the uniform coupling
for Lemma 3.4, we use the properties of the measures Q#

α(�;x1, . . . , x2N). Therefore, the
Markov chain argument does not yield the existence of the stationary measure.

We begin by generalizing Lemma 3.5. By symmetry, we may assume that {1,2} ∈ α. This
lemma only uses the definition of a global multiple SLEκ and the property from Lemma 3.5
of the chordal SLEκ .

LEMMA 3.9. Let κ ∈ (0,4]. Let (�;x1, . . . , x2N) be a polygon and let �L,U ⊂ � be
sub-polygons such that �L, U , and � agree in a neighborhood of the arc (x1x2). Also, let
(η1, . . . , ηN) be any global N -SLEκ in (U ;x1, . . . , x2N) such that η1 is the curve connect-
ing x1 and x2. Then there exists a constant θ = θ(�,�L) > 0, independent of U , such that
P[η1 ⊂ �L] ≥ θ .

PROOF. Denote by Û1 the connected component of U \ ⋃N
j=2 ηj with x1 and x2 on its

boundary. Then, the conditional law of η1 given Û1 is the chordal SLEκ in Û1 connecting x1
and x2. By Lemma 3.5, we have P[η1 ⊂ �L|Û1] ≥ θ(�,�L), independently of Û1. There-
fore, P[η1 ⊂ �L] ≥ θ(�,�L) as well. �

To generalize Lemma 3.6, we use the following auxiliary result, which says that all of the
curves have a positive probability to stay in a subdomain of �, uniformly with respect to
a larger subdomain. Its proof uses the explicit construction of the global N -SLEκ measure
presented in Section 3.1.

LEMMA 3.10. Let κ ∈ (0,4]. Let (�;x1, . . . , x2N) be a polygon and �L ⊂ U ⊂ �

sub-polygons. Suppose (η1, . . . , ηN) ∼ Q#
α(U ;x1, . . . , x2N). Then there exists a constant

θ = θ(�,�L) > 0, independent of U , such that P[ηj ⊂ �L ∀j ] ≥ θ .

PROOF. We prove the lemma separately for κ ∈ (0,8/3] and κ ∈ [8/3,4]. Assume first
that κ ∈ (0,8/3]. Let (γ L

1 , . . . , γ L
N ) be sampled according to Q#

α(�L;x1, . . . , x2N). By Propo-
sition 3.1, we have

P
[
ηj ⊂ �L ∀j

] = Zα(�L;x1, . . . , x2N)

Zα(U ;x1, . . . , x2N)
E

[
exp

(
−cμ

(
U ;U \ �L,

N⋃
j=1

γ L
j

))]
.

Since κ ≤ 8/3, we have c ≤ 0 by (2.5). Thus, combining with the monotonicity property
(3.4), we obtain

P
[
ηj ⊂ �L ∀j

] ≥ Zα(�L;x1, . . . , x2N)

Zα(U ;x1, . . . , x2N)
≥ Zα(�L;x1, . . . , x2N)

Zα(�;x1, . . . , x2N)
> 0,

where the lower bound is independent of U , as claimed.
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Assume next that κ ∈ [8/3,4]. Let (γ1, . . . , γN) ∼ Q#
α(�;x1, . . . , x2N). By Proposi-

tion 3.1, we have

P
[
ηj ⊂ �L ∀j

] = Zα(�;x1, . . . , x2N)

Zα(U ;x1, . . . , x2N)
E

[
1{∀j,γj ⊂U } exp

(
cμ

(
�;� \ U,

N⋃
j=1

γj

))]
.

Since κ ∈ [8/3,4], we have c ≥ 0 by (2.5), so we obtain

P
[
ηj ⊂ �L ∀j

] ≥ Zα(�;x1, . . . , x2N)

Zα(U ;x1, . . . , x2N)
P

[
γj ⊂ �L ∀j

]
≥ Zα(�;x1, . . . , x2N)∏

{a,b}∈α HU(xa, xb)h
P

[
γj ⊂ �L ∀j

]
[by (3.3)]

≥ Zα(�;x1, . . . , x2N)∏
{a,b}∈α H�(xa, xb)h

P
[
γj ⊂ �L ∀j

]
> 0 [by (2.3)].

This gives the assertion for κ ∈ [8/3,4] and completes the proof. �

Now, we prove an analogue of Lemma 3.6 for κ ≤ 4 and N ≥ 3, using the explicit con-
struction of the global N -SLEκ measure presented in Section 3.1.

LEMMA 3.11. Let κ ∈ (0,4]. Let (�;x1, . . . , x2N) be a polygon, and let �L ⊂ V ⊂ U

and Ũ ⊂ � be subpolygons such that dist(�L,�\V ) > 0. Also, suppose that (η1, . . . , ηN) ∼
Q#

α(U ;x1, . . . , x2N) and (η̃1, . . . , η̃N) ∼ Q#
α(Ũ ;x1, . . . , x2N). Then there exists a coupling

of (η1, . . . , ηN) and (η̃1, . . . , η̃N) such that P[ηj = η̃j ⊂ �L ∀j ] ≥ θ , where the constant
θ = θ(�,�L,V ) > 0 is independent of U and Ũ .

PROOF. By Proposition 3.1, the law of (η̃1, . . . , η̃N) restricted to {η̃j ⊂ �L ∀j} is ab-
solutely continuous with respect to the law of (η1, . . . , ηN) restricted to {ηj ⊂ �L ∀j}, with
Radon–Nikodym derivative

R(η1, . . . , ηN) = Zα(U ;x1, . . . , x2N)

Zα(Ũ ;x1, . . . , x2N)
1{ηj⊂�L ∀j}

× exp

(
cμ

(
U ;U \ �L,

N⋃
j=1

ηj

)
− cμ

(
Ũ ; Ũ \ �L,

N⋃
j=1

ηj

))
.

First, we will find a positive lower bound for R(η1, . . . , ηN), separately for κ ∈ (0,8/3] and
κ ∈ [8/3,4]. Since �L ⊂ V ⊂ U , Ũ ⊂ �, on the event {ηj ⊂ �L ∀j}, we have∣∣∣∣∣μ

(
U ;U \ �L,

N⋃
j=1

ηj

)
− μ

(
Ũ ; Ũ \ �L,

N⋃
j=1

ηj

)∣∣∣∣∣ ≤ μ
(
�;� \ V,�L)

.

When κ ∈ (0,8/3], we have c ≤ 0 by (2.5). Thus, using the monotonicity property (3.4), we
see that on the event {ηj ⊂ �L ∀j}, we have

R(η1, . . . , ηN) ≥ Zα(�L;x1, . . . , x2N)

Zα(�;x1, . . . , x2N)
exp

(
cμ

(
�;� \ V,�L))

> 0.(3.10)

On the other hand, when κ ∈ [8/3,4], we have c ≥ 0 by (2.5). On the event {ηj ⊂ �L ∀j},
we have

R(η1, . . . , ηN) ≥ Zα(U ;x1, . . . , x2N)

Zα(Ũ ;x1, . . . , x2N)
exp

(−cμ
(
�;� \ V,�L))

.
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Using (3.3) and (2.3), we estimate the denominator as

Zα(Ũ ;x1, . . . , x2N) ≤ ∏
{a,b}∈α

H
Ũ

(xa, xb)
h ≤ ∏

{a,b}∈α

H�(xa, xb)
h,(3.11)

and using (2.3), we estimate the numerator as

Zα(U ;x1, . . . , x2N) = ∏
{a,b}∈α

HU(xa, xb)
h × fα(U ;x1, . . . , x2N)

≥ ∏
{a,b}∈α

H�L(xa, xb)
h × fα(U ;x1, . . . , x2N).

Taking the infimum over all subpolygons A such that V ⊂ A ⊂ �, we have

fα(U ;x1, . . . , x2N) ≥ inf
A

fα(A;x1, . . . , x2N) := υ(�,V ).

We next show that this infimum is strictly positive. By conformal invariance of fα , we may
take � = H, and we have

fα(A;x1, . . . , x2N) = fα

(
H;ϕA(x1), . . . , ϕA(x2N)

)
> 0

for any conformal map ϕA : A →H. Now, we have

υ(�,V ) = inf
(y1,...,y2N)∈K

fα(H;y1, . . . , y2N) > 0,

where K is a compact subset of R2N such that (ϕA(x1), . . . , ϕA(x2N)) ∈ K for all A. Thus,
we obtain

Zα(U ;x1, . . . , x2N) ≥ ∏
{a,b}∈α

H�L(xa, xb)
h × υ(�,V ) > 0.(3.12)

After combining (3.11) and (3.12), we finally obtain

R(η1, . . . , ηN) ≥ ∏
{a,b}∈α

(
H�L(xa, xb

H�(xa, xb

)h

υ(�,V )e−cμ(�;�\V,�L) > 0.(3.13)

In both estimates (3.10) and (3.13), we obtain a lower bound R(η1, . . . , ηN) ≥ ε :=
ε(�,�L,V ) > 0, independently of U and Ũ , as desired. This completes the first part of
the proof.

Now, denote the probability P[ηj ⊂ �L ∀j ] by p. The total variation distance of the law
of (η̃1, . . . , η̃N) restricted to {η̃j ⊂ �L ∀j} and the law of (η1, . . . , ηN) restricted to {ηj ⊂
�L ∀j} is bounded from above by

E
[(

1 − R(η1, . . . , ηN)
)+1{ηj⊂�L ∀j}

] ≤ p(1 − ε).

It follows from this observation that there exists a coupling of (η1, . . . , ηN) and (η̃1, . . . , η̃N)

such that P[η̃j = ηj ⊂ �L ∀j ] ≥ pε. Combining this with Lemma 3.10, we obtain the as-
serted result. �

We are now ready to conclude with the proof of Theorem 1.2.

PROOF OF THEOREM 1.2. The existence was proved in [21, 25, 31], and summarized
in Section 3.1. Hence, we only need to prove the uniqueness. To this end, we proceed by
induction on N ≥ 2. The case N = 2 is the content of Corollary 3.3. Thus, we let N ≥
3 and assume that, for any link pattern β ∈ LPN−1, there exists a unique global (N − 1)-

SLEκ associated to β . For j ∈ {1, . . . ,N − 1}, we denote by Q
{aj ,bj }
β (�;x1, . . . , x2N−2) the

marginal law of ηj in this global multiple SLE.
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FIG. 4. In the left panel, the two red curves are ηL and ηR , and the two gray parts are �L and �R . In
the middle panel, the gray part is the domain DL, and the marked points along the boundary of DL are
x1, . . . , xr−1, xr+2, . . . , x2N . In the right panel, the gray part is the domain DR , and the marked points along the
boundary of DR are x3, . . . , x2N .

Now, let α ∈ LPN and suppose that (η1, . . . , ηN) ∈ Xα
0 (�;x1, . . . , x2N) has the law of a

global N -SLEκ associated to α. By symmetry, we may assume that {1,2}, {r, r + 1} ∈ α with
r ∈ {3,4, . . . ,2N − 1}. Denote by ηL (resp., ηR) the curve in the collection {η1, . . . , ηN } that
connects x1 and x2 (resp., xr and xr+1). It follows from the induction hypothesis that, given
(ηL, ηR), the conditional law of the other (N − 2) curves is the unique global (N − 2)-SLEκ

associated to (α/{r, r + 1})/{1,2} in the appropriate remaining domain (recalling the link
removal notation). Thus, it is sufficient to prove the uniqueness of the joint law on the pair
(ηL, ηR).

The induction hypothesis also implies that, given ηR (resp. ηL), the conditional law of the
rest of the curves is the unique global (N − 1)-SLEκ associated to the link pattern α/{r, r +
1} (resp., α/{1,2}). As illustrated in Figure 4, we denote by DL (resp. DR) the connected
component of �\ηR (resp. �\ηL) with x1 and x2 (resp., xr and xr+1) on its boundary. Then
the conditional law of ηL given ηR is

Q
{1,2}
α/{r,r+1}

(
DL;x1, . . . , xr−1, xr+2, . . . , x2N

)
and the conditional law of ηR given ηL is

Q
{r−2,r−1}
α/{1,2}

(
DR;x3, . . . , x2N

)
.

Now to finish, following the idea of the proof of Proposition 3.2, we consider Markov
chains sampling ηL and ηR from these conditional laws. After replacing Lemma 3.5 by
Lemma 3.9 (for N − 1) and Lemma 3.6 by Lemma 3.11 (also for N − 1) in the proof of
Proposition 3.2, we see that this Markov chain has a unique stationary measure which coin-
cides with the one presented in Section 3.1. �

3.4. Marginal law. To conclude this section, we determine the marginal law of a single
curve in the global multiple SLEκ . Recall that the pure partition functions Zα were defined
in (3.2). We denote

Zα(x1, . . . , x2N) := Zα(H;x1, . . . , x2N) for x1 < · · · < x2N.

LEMMA 3.12 ([31], Proposition 4.9). Let κ ∈ (0,4] and α ∈ LPN . Assume that {a, b} ∈
α. Let Wt be the solution to the following SDEs:

dWt = √
κ dBt + κ∂a logZα

(
V 1

t , . . . , V a−1
t ,Wt ,V

a+1
t , . . . , V 2N

t

)
dt,

dV i
t = 2 dt

V i
t − Wt

,
(3.14)
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with W0 = xa and V i
0 = xi for i �= a. Then the Loewner chain driven by Wt is well-defined

up to the swallowing time Tb of xb. Moreover, it is almost surely generated by a continuous
curve up to and including Tb. This curve has the same law as the one connecting xa and xb

in the global multiple SLEκ associated to α in the polygon (H;x1, . . . , x2N).

4. Multiple interfaces in Ising and random-cluster models. In this final section, we
give examples of discrete models whose interfaces converge in the scaling limit to multiple
SLEs. More precisely, we consider the critical Ising and random-cluster models in the plane.

In Sections 4.1–4.3, we consider interfaces in the critical random-cluster models with al-
ternating boundary conditions and fixing the connectivity pattern of the curves. We show that,
given the convergence of a single interface, multiple interfaces also have a conformally in-
variant scaling limit, namely the unique global multiple SLEκ with κ ∈ (4,6]. Interestingly,
this range of the parameter κ is beyond the range (0,4], where global multiple SLEs have
been explicitly constructed and classified. Thus, from the convergence of these discrete in-
terfaces we would in fact get the existence and uniqueness of the global multiple SLEκ with
κ ∈ (4,6]. Unfortunately, the convergence of a single interface in the random-cluster model
towards the chordal SLEκ has only been rigorously established for the case of κ = 16/3 —
the FK-Ising model. This is the case appearing in Proposition 1.4, whose proof is completed
in Section 4.3. The convergence of two interfaces of the FK-Ising model was also proved in
[20], where the authors used a discrete holomorphic observable constructed in [7, 39, 40]. In
contrast, our method gives the convergence for any given number of interfaces via a global
approach.

In the case of the critical Ising model with alternating boundary conditions, K. Izyurov
proved that the collection of any number N of interfaces converges to a multiple SLE process
in a local sense [15]. In the present article, we condition the interfaces to forming a given
connectivity pattern and prove the convergence of the interfaces as a whole global collection
of curves, which we know by Theorem 1.2 to be given by the unique global N -SLE3. This
is the content of Section 4.4, where we prove Proposition 1.3. We are also able to determine
the marginal law of one curve in this scaling limit. The case of two curves was considered in
[43]: in this case, the marginal law is also called a hypergeometric SLE.

In [31], Sections 5 and 6, the authors discussed multiple level lines of the Gaussian free
field with alternating boundary data. These level lines give rise to global multiple SLE4 curves
(with any connectivity pattern). In this particular case, the marginal law of one curve in the
global multiple SLE4 degenerates to a certain SLE4(ρ) process. In general, however, the
marginal laws of single curves in global multiple SLEs are not SLEκ(ρ) processes, but certain
more general variants of the chordal SLEκ . We refer to [31], Section 3, for more details.

Notation and terminology. We will use the following notions throughout. For notational
simplicity, we only consider the square lattice Z2. Two vertices v and w are said to be neigh-
bors if their Euclidean distance equals one, which we denote by v ∼ w. For a finite subgraph
G = (V (G),E(G)) of Z2, we denote by ∂G the inner boundary of G:

∂G = {
v ∈ V (G) : ∃w /∈ V (G) such that 〈v,w〉 ∈ E

(
Z2)}

.

As an abuse of notation, we sometimes let G also denote the simply connected domain formed
by all of the faces, edges and vertices of G.

In the case of the square lattice, the dual lattice (Z2)∗ is just a translated version of Z2.
More precisely, (Z2)∗ is the dual graph of Z2: its vertex set is (1/2,1/2) + Z2 and its edges
are given by all pairs (v1, v2) of vertices that are neighbors. The vertices and edges of (Z2)∗
are called dual-vertices and dual-edges. In particular, for each edge e of Z2, we associate a
dual-edge, denoted by e∗, that crosses e in the middle. For a subgraph G of Z2, we define G∗
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to be the subgraph of (Z2)∗ with edge set E(G∗) = {e∗ : e ∈ E(G)} and vertex set given by
the endpoints of these dual-edges.

Finally, the medial lattice (Z2)� is the graph with the centers of edges of Z2 as the vertex
set, and edges given by all pairs of vertices that are neighbors. In the case of the square lattice,
the medial lattice is a rotated and rescaled version of Z2. We identify the faces of (Z2)� with
the vertices of Z2 and (Z2)∗.

Now, suppose that G is a finite connected subgraph of the (possibly translated, rotated and
rescaled) square lattice Z2 such that the complement of G is also connected (this means that
G is simply connected). Then we call a triple (G;v,w) with v,w ∈ ∂G distinct boundary
vertices a discrete Dobrushin domain. We note that the boundary ∂G is divided into two
arcs (vw) and (wv). More generally, given distinct boundary vertices v1, . . . , v2N ∈ ∂G in
counterclockwise order, we call the (2N + 1)-tuple (G;v1, . . . , v2N) a discrete polygon. In
this case, the boundary ∂G is divided into 2N arcs.

In this article, we consider scaling limits of models on discrete lattices with mesh size
tending to zero. We only consider the following square lattice approximations, even though
the results discussed in this section hold in a more general setting as well; see [7]. For small
δ > 0, we let �δ denote a finite subgraph of the rescaled square lattice δZ2. Like �δ , we
decorate its vertices and edges with the mesh size δ as a superscript. The definitions of the
dual lattice �δ∗ := (�δ)∗, the medial lattice �δ� := (�δ)� and discrete Dobrushin domains and
polygons obviously extend to this context.

DEFINITION 4.1. Let (�;x1, . . . , x2N) be a bounded polygon and consider a sequence
((�δ;xδ

1, . . . , x
δ
2N))δ>0 of discrete polygons. We say that (�δ;xδ

1, . . . , x
δ
2N) converges to

(�;x1, . . . , x2N) as δ → 0 in the Carathéodory sense if there exist conformal maps f δ

(resp. f ) from the unit disc U = {z ∈ C : |z| < 1} to �δ (resp., from U to �) such that
f δ → f uniformly on any compact subset of U, and for all j ∈ {1, . . . ,2N}, we have
lim
δ→0

(f δ)−1(xδ
j ) = f −1(xj ).

4.1. Random-cluster models. Let G = (V (G),E(G)) be a finite subgraph of Z2. A (per-
colation) configuration ω = (ωe)e∈E(G) is an element of {0,1}E(G). If ωe = 1, the edge e is
said to be open, and otherwise, e is said to be closed. The configuration ω can be seen as
a subgraph of G with the same set of vertices V (G) and whose edges are the open edges
{e ∈ E(G) : ωe = 1}. We denote by o(ω) (resp., c(ω)) the number of open (resp., closed)
edges of ω.

We are interested in the connectivity properties of the graph ω. The maximal connected
components of ω are called clusters. Two vertices u and v are connected by ω inside S ⊂ Z2

if there exists a sequence {vj : 0 ≤ j ≤ k} of vertices in S such that v0 = u, vk = v, and each
edge 〈vj , vj+1〉 is open in ω for 0 ≤ j < k.

We may also impose to our model various boundary conditions, which can be understood
as encoding how the sites are connected outside G. A boundary condition ξ is a partition
P1 � · · · � Pk of ∂G. Two vertices are said to be wired in ξ if they belong to the same Pj and
free otherwise. We denote by ωξ the (quotient) graph obtained from the configuration ω by
identifying the wired vertices together in ξ .

The probability measure φ
ξ
p,q,G of the random-cluster model on G with edge-weight p ∈

[0,1], cluster-weight q > 0, and boundary condition ξ , is defined by

φ
ξ
p,q,�[ω] := po(ω)(1 − p)c(ω)qk(ωξ )

Z
ξ
p,q,�

,

where Z
ξ
p,q,� = ∑

ω

po(ω)(1 − p)c(ω)qk(ωξ ),
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where and k(ωξ ) is the number of connected components of the graph ωξ . For q = 1, this
model is simply the Bernoulli bond percolation. For q = 2, the random-cluster model is
also known as the FK-Ising model, closely related to the spin Ising model. Proposition 1.4
concerns this case.

For a configuration ξ on E(Z2) \ E(G), the boundary condition induced by ξ is defined
as the partition P1 � · · · � Pk , where two vertices belong to the same Pj if and only if there
exists an open path in ξ connecting them. We identify the boundary condition induced by ξ

with the configuration itself, and denote the measure of the random-cluster model with such
boundary conditions by φ

ξ
p,q,G . As a direct consequence of these definitions, we have the

following domain Markov property. Suppose that G ⊂ G′ are two finite subgraphs of Z2. Fix
p ∈ [0,1], q > 0, and a boundary condition ξ on ∂G′. Let X be a random variable, which is
measurable with respect to the status of the edges in G. Then, for all ψ ∈ {0,1}E(G′)\E(G), we
have

φ
ξ

p,q,G′
[
X|ωe = ψe for all e ∈ E

(
G′) \ E(G)

] = φ
ψξ

p,q,G[X],
where ψξ is the partition on ∂G obtained by wiring two vertices in ∂G if they are connected
in ψ .

We define an ordering for configurations as follows. For ω,ω′ ∈ {0,1}E(G), we denote by
ω ≤ ω′ if ωe ≤ ω′

e for all e ∈ E(G). An event A depending on the edges in E(G) is said to
be increasing if, for any ω ∈ A, the inequality ω ≤ ω′ implies that ω′ ∈ A. When q ≥ 1, the
following FKG inequality (positive association) holds. Fix p ∈ [0,1], q ≥ 1, and a boundary
condition ξ on ∂G. Then, for any two increasing events A and B, we have

φ
ξ
p,q,G[A∩B] ≥ φ

ξ
p,q,G[A]φξ

p,q,G[B].
Consequently, for any boundary conditions ξ ≤ ψ and for any increasing event A, we have

φ
ξ
p,q,G[A] ≤ φ

ψ
p,q,G[A].(4.1)

We denote by φ0
p,q,G the probability measure of the random-cluster model with free bound-

ary conditions, where the partition ξ of ∂G consists of singletons only. We denote by φ1
p,q,G

the probability measure of the random-cluster model with wired boundary conditions, where
the partition ξ of ∂G is the whole set ∂G. In the sense of (4.1), φ0

p,q,G is minimal and φ1
p,q,G

is maximal.
A configuration ω on G can be uniquely associated to a dual configuration ω∗ on the dual

graph G∗, defined by ω∗(e∗) = 1 − ω(e) for all e ∈ E(G). A dual-edge e∗ is said to be dual-
open if ω∗(e∗) = 1 and dual-closed otherwise. A dual-cluster is a connected component of
ω∗. We extend the notions of dual-open paths and connectivity events in the obvious way.
Now, if ω is distributed according to φ

ξ
p,q,G , then ω∗ is distributed according to φ

ξ∗
p∗,q∗,G∗ ,

with

q∗ = q and
pp∗

(1 − p)(1 − p∗)
= q.

Note that, at the self-dual point p∗ = p, we have

p = pc(q) :=
√

q

1 + √
q

.

For this critical case p = pc(q), we have the following Russo–Seymour–Welsh (RSW) es-
timate. For a rectangle R = [a, b] × [c, d] ⊂ Z2, we let Chor(R) denote the event that there
exists an open path in R from {a} × [c, d] to {b} × [c, d]. For the probability of this event,
we have a lower bound which is uniform in the size of the rectangle (but which depends on
the shape, and is not expected to hold for q = 4).
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PROPOSITION 4.2 ([10], Theorem 7). Let 1 ≤ q < 4 and u > 0, and denote by Ru
n the

rectangle [[0, un]] × [[0, n]] for n ≥ 1. Then there exists a constant θ(u) > 0 such that

φ0
pc(q),q,Ru

n

[
Chor

(
Ru

n

)] ≥ θ(u) for any n ≥ 1.

Next, we consider interfaces. If (G;u, v) is a discrete Dobrushin domain, in the Dobrushin
boundary conditions for the random-cluster model, all edges along the arc (vu) are wired
and all edges along (uv) are free. Then, for each vertex w of the medial graph G�, there
exists either an open edge of G or a dual-open edge of G∗ passing through w. In addition,
we can draw self-avoiding loops on G� as follows: a loop arriving at a vertex of the medial
lattice always makes a turn of ±π/2, so as not to cross the open or dual-open edges through
this vertex. The loop representation contains loops and the self-avoiding path connecting two
vertices u� and v� of the medial graph G� that are closest to u and v. This curve is called the
interface (the exploration path) of the random-cluster model.

At the critical point p = pc(q), this interface is expected to converge weakly in the scaling
limit to the chordal SLEκ curve, with κ specifically given by q . The convergence has been
rigorously established for the special case of q = 2, also known as the FK-Ising model [5], in
the topology of Section 1.2.

CONJECTURE 4.3 (See, e.g., [35]). Let 0 ≤ q ≤ 4 and p = pc(q). Let (�δ;xδ, yδ) be a
sequence of discrete Dobrushin domains converging to a Dobrushin domain (�;x, y) in the
Carathéodory sense. Then, as δ → 0, the interface of the critical random-cluster model on
(�δ;xδ, yδ), with cluster weight q and Dobrushin boundary conditions, converges weakly to
the chordal SLEκ connecting x and y with

κ = 4π

arccos(−√
q/2)

.(4.2)

THEOREM 4.4 ([5], Theorem 2). Conjecture 4.3 holds for q = 2 and κ = 16/3.

4.2. Existence of global multiple SLEs with κ ∈ (4,6]. We consider the convergence
of random-cluster interfaces in the following setup. Abusing and lightening notation, let us
write xδ for both xδ and (x�)δ (converging to the same point x as δ → 0). Let the poly-
gons (�δ;xδ

1, . . . , x
δ
2N) converge to (�;x1, . . . , x2N) as δ → 0 in the Carathéodory sense.

Consider the critical random-cluster model on �δ with alternating boundary conditions (1.2).
With such boundary conditions, there are N interfaces (ηδ

1, . . . , η
δ
N) connecting pairwise the

2N boundary points xδ
1, . . . , x

δ
2N , as illustrated in Figure 5. These interfaces form a planar

connectivity encoded in a link pattern ϑδ ∈ LPN . We consider the interfaces conditionally on
forming a given connectivity ϑδ = α = {{a1, b1}, . . . , {aN, bN }} ∈ LPN .

Conjecturally, conditionally on the event {ϑδ = α}, the law of the collection (ηδ
1, . . . , η

δ
N)

converges weakly as δ → 0 to a global N -SLEκ associated to α, where κ is determined by q

via (4.2). In this section, we will prove this statement for the case of q = 2 (so κ = 16/3) —
this is the content of Proposition 1.4. The main inputs to the proof are Theorem 4.4 concerning
convergence of one interface, classification of multiple SLE16/3 measures analogously to
Theorem 1.2, and the RSW estimate from Proposition 4.2.

PROOF OF PROPOSITION 1.4. Conditionally on {ϑδ = α}, we have(
ηδ

1, . . . , η
δ
N

) ∈ Xα
0
(
�δ;xδ

1, . . . , x
δ
2N

)
for all δ > 0.
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FIG. 5. The loop representation of a configuration of the random-cluster model on a polygon with six marked
points x1, . . . , x6 on the boundary, with alternating boundary conditions. There are three interfaces connecting
the marked boundary points, illustrated in red, blue and orange, respectively.

First of all, the collection of laws of the sequence ((ηδ
1, . . . , η

δ
N))δ>0 is relatively com-

pact; indeed, the RSW estimate in Proposition 4.2 implies the relative compactness by the
results in [1, 19] (see Lemma 4.5 below). Thus, there exist subsequential limits, and we may
assume that, for some sequence δn

n→∞−→ 0, the sequence (η
δn

1 , . . . , η
δn

N ) converges weakly to
(η1, . . . , ηN). For convenience, we couple them in the same probability space so that they
converge almost surely. Also, to lighten notation, we replace the superscripts δn by the super-
script n here and in what follows. For each j ∈ {1, . . . ,N}, we let Dn

j denote the connected
component of �n \ ⋃

i �=j ηn
i having xn

aj
and xn

bj
on its boundary (see Figure 6 (left)).

In Lemma 4.6, we show that as n → ∞, the discrete Dobrushin domains (Dn
j ;xn

aj
, xn

bj
)

converge almost surely to some random Dobrushin domains in the Carathéodory sense. No-
tice that it is not clear a priori that the limit of Dn

j is still simply connected, as the interfaces in

FIG. 6. In the left panel, the red curve is the interface connecting xaj and xbj
, and the gray part is Dn

j . The
middle panel depicts a bulk pinching scenario, where around the bulk pinching point, an interior six-arm event
(with alternating pattern) occurs. The right panel depicts a boundary pinching scenario, where around the bound-
ary pinching point, a near-boundary three-arm event (with alternating pattern) occurs. We show in the proof of
Lemma 4.6 that these events will not survive in the scaling limit. It turns out that in our case, the RSW Propo-
sition 4.2 is sufficient for this purpose; note, however, that usually such bulk pinching events are ruled out by a
six-arm exponent argument.
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the limit may touch the boundary, and they may have multiple points. The task in the proof of
Lemma 4.6 is therefore to rule out this behavior. We establish this by using the RSW estimate
from Proposition 4.2. Specifically, we show that the limit domain (Dj ;xaj

, xbj
) is the simply

connected subdomain Dj of � \ ⋃
i �=j ηi with xaj

and xbj
on its boundary. As a by-product,

Lemma 4.6 also shows that (η1, . . . , ηN) ∈ Xα
0 (�;x1, . . . , x2N) almost surely.

Then, in Lemma 4.7 we prove that the subsequential limit (η1, . . . , ηN) must be a global
multiple SLE16/3. This also shows that global multiple SLE16/3 exists. Finally, in Proposi-
tion 4.10 in Section 4.3, we prove that such a global multiple SLE16/3 is unique, thus being
the unique subsequential limit. This gives the convergence of the sequence and concludes the
proof of Proposition 1.4. �

Next, we prove the auxiliary results needed to finish the proof of Proposition 1.4. We
formulate some of them for general q ∈ [1,4) (i.e., κ ∈ (4,6]), given Conjecture 4.3, and
discuss in Remark 4.12 the scope of these results.

LEMMA 4.5. Suppose Conjecture 4.3 holds for some q ∈ [1,4) and let κ ∈ (4,6] be the
value related to q via (4.2). Then the collection of laws of the sequence ((ηδ

1, . . . , η
δ
N))δ>0 is

relatively compact.

PROOF. The RSW estimate in Proposition 4.2 shows that the single FK-Ising interface
with Dobrushin boundary conditions satisfies the so-called condition “G2” in [19], and thus,
its law is relatively compact, as stated in [10], Theorem 6. This can be generalized to conclude
that also the sequence ((ηδ

1, . . . , η
δ
N))δ>0 of multiple interfaces with alternating boundary

conditions is relatively compact; see [17], Theorem 4.1, for details. �

LEMMA 4.6. Suppose Conjecture 4.3 holds for some q ∈ [1,4) and let κ ∈ (4,6] be
the value related to q via (4.2). As n → ∞, for each j ∈ {1, . . . ,N}, the discrete Dobrushin
domain (Dn

j ;xn
aj

, xn
bj

) converges almost surely to the Dobrushin domain (Dj ;xaj
, xbj

) in the
Carathéodory sense.

PROOF. Fix j ∈ {1, . . . ,N}. As n → ∞, the domains (Dn
j ;xn

aj
, xn

bj
) can fail to converge

to a Dobrushin domain only if the limit domain Dj is not simply connected. There are two
scenarios when this could happen, both resulting from specific behavior of the other interfaces
ηn

i with i �= j : either two of these interfaces get close together in the interior of �n, pinching
ηn

j in between (see Figure 6 (middle)), or one of these interfaces gets close to the boundary
of �n, pinching ηn

j to the boundary (see Figure 6(right)). In both cases, the points xn
aj

and
xn
bj

get disconnected in the limit n → ∞. We call the former a bulk pinching scenario and
the latter a boundary pinching scenario.

First, we consider the boundary pinching scenario. Without loss of generality, we may
assume that the boundary conditions on (xn

aj
xn
aj+1) are wired, as in Figure 7 (left). Also, it

suffices to consider the pinching on the boundary arc (xn
bj

xn
bj+1) and assume that bj ≥ aj +2.

Denote by Cn
j the event that there is an open path connecting (xn

aj
xn
aj+1) to (xn

bj−1x
n
bj

) in �n.
Note that {ϑn = α} implies the event Cn

j . Denote the exploration path from xn
aj+1 to xn

bj−1 by
ζ n
j , as in Figure 7 (middle), parameterized by the number of steps starting from xn

aj+1. For a
fixed time t , inside the domain �n \ζ n

j [0, t], consider the two boundary arcs ∂n
1 := (xn

bj
xn
bj+1)

and ∂n
2 defined as the union of the boundary arc (xn

aj+1x
n
aj+2) and the right-hand side of

ζ n
j [0, t]—both carry free boundary conditions, and are drawn in red on Figure 7(right). Notice

that the event Cn
j implies that there is no dual-open crosscut between ∂n

1 and ∂n
2 . The gist
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FIG. 7. A typical boundary pinching scenario.

of the argument is that if a boundary pinching occurs, such a crosscut will exist with high
probability.

For all t ≥ 0, let dn
1 (t) denote the length of the shortest path in Dn

j between ζ n
j (t) and ∂n

1
that does not intersect ζ n

j [0, t], and set dn
2 (t) := |xn

bj
− ζ n

j (t)| and εn
j (t) := dn

1 (t)/dn
2 (t). Then

the RSW estimate from Proposition 4.2 combined with the FKG inequality (4.1) shows that
for some universal constant C > 0, we have the upper bound P[Cn

j |ζ n
j [0, t]] ≤ C(εn

j (t))1/C .
Now, for u > 0 small, denote by Tu the first time t ≥ 0 when εn

j (t) ≤ u (equaling +∞ if no
such time exists). From the above bound, we obtain

P
[
inf
t≥0

εn
j (t) ≤ u|ϑn = α

] ≤
P[Cn

j ∩ {inf
t≥0

εn
j (t) ≤ u}]

P[ϑn = α]

= E[1{Tu<∞}E[Cn
j |ζ n

j [0, Tu]]]
P[ϑn = α]

≤ Cu1/C

P[ϑn = α] .
Proposition 4.2 (cf. the footnote in the proof of Lemma 4.11) implies that P[ϑn = α] is
bounded away from zero uniformly in n. Therefore, we have

lim
u→0

lim sup
n→∞

P
[
inf
t≥0

εn
j (t) ≤ u|ϑn = α

] = 0.

This shows that, in the scaling limit n → ∞, the boundary pinching scenario cannot occur.
Bulk pinchings can be ruled out as a consequence. Indeed, assume that on the boundary

of the domain �n, there is a triple of pairs of boundary points belonging to the pairing ϑn

and such that the corresponding interfaces, say ζ n
1 , ζ n

2 and ζ n
3 , are involved in a bulk pinching

scenario with positive probability (see Figure 6 (middle), where ζ n
2 is colored red). First,

explore ζ n
1 ; such a bulk pinching can then be seen as a boundary pinching in the complement

of ζ n
1 , and such boundary pinchings are excluded by the previous argument.

In summary, we have shown that neither the bulk pinching scenario nor the boundary
pinching scenario can survive in the scaling limit. This shows that (Dn

j ;xn
aj

, xn
bj

) converges
almost surely to the Dobrushin domain (Dj ;xaj

, xbj
) in the Carathéodory sense, which is

what we sought to prove. �

Note that the proof of Lemma 4.6 also shows that almost surely,

(η1, . . . , ηN) ∈ Xα
0 (�;x1, . . . , x2N).

LEMMA 4.7. In the setup of the proof of Proposition 1.4 (with q = 2 and κ = 16/3), the
limit (η1, . . . , ηN) has the distribution of a global multiple SLE16/3.
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PROOF. We need to prove that, for each j ∈ {1, . . . ,N}, the conditional law of the ran-
dom curve X := ηj given the other random curves Y := (η1, . . . , ηj−1, ηj+1, . . . , ηN) is the
appropriate chordal SLE16/3. We fix j and denote

Xn := ηn
j and Yn := (

ηn
1, . . . , ηn

j−1, η
n
j+1, . . . , η

n
N

)
, n ≥ 1.

By assumption, (Xn,Y n) converges to (X,Y ) in distribution. However, this does not auto-
matically imply the convergence of the conditional distribution of Xn given Yn to the condi-
tional distribution of X given Y . In our case this is true, as we will now prove. (See also the
discussion in [12], Section 5.)

Recall that we couple all of the random variables {(Xn,Y n) : n ≥ 1} in the same prob-
ability space so that they converge almost surely to (X,Y ) as n → ∞. Now, given Yn,
the random curve Xn is a FK-Ising interface with Dobrushin boundary conditions in the
random Dobrushin domain (Dn

j ;xn
aj

, xn
bj

) by the domain Markov property. By Lemma 4.6,
(Dn

j ;xn
aj

, xn
bj

) converges almost surely to the random Dobrushin domain (Dj ;xaj
, xbj

) in the
Carathéodory sense. Thus, almost surely, there exist conformal maps Gn (resp., G) from U

onto Dn
j (resp., Dj ) such that, as n → ∞, the maps Gn converge to G uniformly on compact

subsets of U, and we have (Gn)−1(xn
aj

) → G−1(xaj
) = 1 and (Gn)−1(xn

bj
) → G−1(xbj

) =
−1. Furthermore, for each n, the map Gn is a measurable function of Yn, and G is a measur-
able function of Y . To conclude, we use the following two observations:

1. On the one hand, Theorem 4.4 shows that the law of (Gn)−1(Xn) converges to the
chordal SLE3 in U connecting the points 1 and −1.

2. On the other hand (see also [16], Proposition 4.7), one can show that (Gn)−1(Xn)

converges to G−1(X) as follows. By assumption, (Xn,Y n) converges to (X,Y ) almost surely.
Now, we send Xn (resp., X) conformally onto H and denote by Wn (resp., W ) its driv-
ing function. On the one hand, applying [19], Proposition 4.12, Theorem 1.5, and Corol-
lary 1.7, to the critical FK-Ising interfaces (Xn)n≥1, we see that Wn → W locally uni-
formly. On the other hand, applying [19], Proposition 4.12, Theorem 1.5 and Corollary 1.7,
to {(Gn)−1(Xn)}, we see that this collection is tight, and for any convergent subsequence
(Gnk)−1(Xnk ) → η̃, the curve η̃ has a continuous driving function W̃ such that Wnk → W̃

locally uniformly (note that this fact is highly nontrivial). Combining these two facts, we see
that W̃ coincides with W , so η̃ coincides with G−1(X). In particular, this is the only subse-
quential limit of the collection {(Gn)−1(Xn) : n ≥ 1}, so we have (Gn)−1(Xn) → G−1(X) as
n → ∞.

Combining these observations, we see that the law of G−1(X) is the chordal SLE16/3 in
U connecting 1 and −1. In particular, the law of G−1(X) is independent of Y with G a
measurable function of Y . Hence, the conditional law of X given Y is the chordal SLE16/3 in
Dj connecting the points xaj

and xbj
. �

4.3. Uniqueness of global multiple SLEs with κ ∈ (4,6]. In this section, we prove that
the scaling limit of each subsequence of FK-Ising interfaces is unique, thereby completing
the proof of Proposition 1.4. The idea is similar to the proof of Theorem 1.2 in Section 3.3.
In particular, we need analogues of the lemmas appearing in Sections 3.2 and 3.3. Again, we
formulate them for general κ ∈ (4,6].

LEMMA 4.8. Suppose Conjecture 4.3 holds for some q ∈ [1,4) and let κ ∈ (4,6] be the
value related to q via (4.2). Let (�;x, y) be a bounded Dobrushin domain. Let �L,U ⊂ �

be Dobrushin subdomains such that �L, U , and � agree in a neighborhood of the arc (yx).
Suppose γ ∼ P(�;x, y) and η ∼ P(U ;x, y). Then we have

P
[
η ⊂ �L] ≥ P

[
γ ⊂ �L]

.

In particular, Lemma 3.5 holds for the corresponding κ ∈ (4,6].
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PROOF. This immediately follows by combining the domain Markov property with the
comparison (4.1) of boundary conditions with Conjecture 4.3. �

We remark that Lemma 4.8 concerns the chordal SLEκ with κ ∈ (4,6], and its statement
has nothing to do with discrete models. However, we do not have a proof for this lemma
without using Conjecture 4.3.

PROPOSITION 4.9. Suppose Conjecture 4.3 holds for some q ∈ [1,4) and let κ ∈ (4,6]
be the value related to q via (4.2). Then, for each quad (�;x1, . . . , x4) and for each link
pattern α ∈ LP2, there exists a unique global 2-SLEκ associated to α.

PROOF. As in Section 3.2, without loss of generality, we assume that α = {{1,4}, {2,3}}.
Then, to prove the assertion, we argue as in the proof of Proposition 3.2, with (�;x1, . . . ,

x4) = (�;xL, xR, yR, yL). Taking � = [0, ] × [0,1] and xL = (0,0), xR = (,0), yR =
(,1), yL = (0,1), we define a Markov chain on pairs (ηL, ηR) of curves by sampling from
the conditional laws: given (ηL

n , ηR
n ), we pick i ∈ {L,R} uniformly and resample ηi

n+1 ac-
cording to the conditional law given the other curve. However, in the current situation, we
have κ ∈ (4,6], so the configuration sampled according to this rule may no longer stay
in the space X0(�;xL, yL, xR, yL). In this case, when resampling according to the condi-
tional law, we sample the curves in each connected component and concatenate the pieces
of curves together; see the more detailed description beneath equation (4.4). Fortunately, this
issue turns out to be irrelevant in the end, as we will show that, for any initial configuration
(ηL

0 , ηR
0 ) ∈ X0(�;xL, xR, yR, yL), the corresponding Markov chain (ηL

n , ηR
n ) will eventually

stay in the space X0(�;xL, yL, xR, yL):

P
[∃n0 < ∞ such that

(
ηL

n , ηR
n

) ∈ X0
(
�;xL, yL, xR, yL)

for all n ≥ n0
] = 1.(4.3)

Once (4.3) has been established, the existence and uniqueness of the global 2-SLEκ follows
by repeating the proof Proposition 3.2, with Lemma 3.5 replaced by Lemma 4.8. Hence, it
remains to prove (4.3).

In the Markov chain (ηL
n , ηR

n ), we want to record the times when L and R are picked. Let
τL

0 = τR
0 = 0, and for n ≥ 1, let τR

n (resp., τL
n ) be the first time after τL

n−1 (resp., τR
n ) that R

(resp., L) is picked. Let

nκ =
⌈

κ

8 − κ

⌉
+ 1.

To prove (4.3), it suffices to show that ηR
n ∩ (yLxL) = ∅ for all n ≥ τR

nκ
, because a similar

property for ηL
n follows by symmetry (note also that τL

n ≥ τR
n ). For this purpose, we let γ R

be the SLEκ in � connecting xR and yR . We will use the following two essential properties
of γ R :

1. By the duality property of the SLEκ (see, e.g., [9] or [29], Theorem 1.4), we know that
the left boundary of γ R has the law of the SLE16/κ(16/κ − 4;8/κ − 2) with two force points
next to the starting point. Therefore, the left boundary of γ R does not hit (xRyR).

2. The curve γ R hits (yLxL) with positive probability, and using [2] and Lemma A.1 from
the Appendix, we see that, almost surely on the event {γ R ∩ (yLxL) �= ∅}, the Hausdorff
dimension of the intersection set satisfies

dim
(
γ R ∩ (

yLxL)) ≤ 1 − β, where β = 8 − κ

κ
.
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Now, for τR
1 ≤ n ≤ τL

1 − 1, the curve ηR
n is an SLEκ in a domain which is a subset of �. By

Lemma 4.8, we can couple ηR
n and γ R so that γ R stays to the left of ηR

n almost surely. Thus,
we have almost surely

dim
(
ηR

n ∩ (
yLxL)) ≤ dim

(
γ R ∩ (

yLxL)) ≤ 1 − β.

In particular, for the last time before sampling the left curve, we have almost surely

dim(A1) ≤ 1 − β for A1 = ηR
τL

1 −1
∩ (

yLxL)
.(4.4)

Then, for τL
1 ≤ n ≤ τR

2 − 1, we sample ηL
n according to the conditional law given ηR

τL
1 −1

.
However, if A1 �= ∅, then the domain � \ ηR

τL
1 −1

is not connected. In this case, we sample
the SLEκ in those connected components of � \ ηR

τL
1 −1

which have a part of (yLxL) on the
boundary and define ηL

n to be the concatenation of these curves. We note that, by the above
observation 1, the right boundary of ηL

n only hits (yLxL) in A1.
Next, for τR

2 ≤ n ≤ τL
2 − 1, we sample ηR

n according to the conditional law given ηL
τR

2 −1
.

Again, the curve ηR
n is a SLEκ in a domain which is a subset of �, and we can couple it with

γ R in such a way that γ R stays to the left of ηR
n almost surely. Thus, we have almost surely

ηR
n ∩ (

yLxL) ⊂ ηR
n ∩ A1 ⊂ γ R ∩ A1.

Combining this with (4.4), we see that, almost surely,

dim
(
ηR

n ∩ (
yLxL)) ≤ dim

(
γ R ∩ A1

) ≤ (1 − 2β)+.

In particular, we can improve (4.4) to

dim(A2) ≤ (1 − 2β)+ for A2 = ηR
τL

2 −1
∩ (

yLxL)
,

and iterating the same argument and combining with Lemma A.1, we see that

ηR
n ∩ (

yLxL) = ∅ for all n ≥ τR
nκ

,

almost surely. This concludes the proof. �

PROPOSITION 4.10. Let (�;x1, . . . , x2N) be a polygon with N ≥ 1. For any α ∈ LPN ,
there exists a unique global N -SLE16/3 associated to α.

PROOF. The existence follows from the subsequential scaling limit in Lemma 4.7, so
it remains to prove the uniqueness. We use induction on N ≥ 2 and the same arguments as
in the proof of Theorem 1.2. First, the assertion holds for N = 2 by Proposition 4.9. Next,
we let N ≥ 3 and assume that for any β ∈ LPN−1, the global (N − 1)-SLEκ associated to
β is unique. Then, as in the proof of Theorem 1.2, we take α ∈ LPN with {1,2} ∈ α and
{r, r +1} ∈ α for some r ∈ {3,4, . . . ,2N −1}, and we let (η1, . . . , ηN) ∈ Xα

0 (�;x1, . . . , x2N)

be a global N -SLEκ associated to α. We denote by ηL (resp., ηR) the curve in the collection
{η1, . . . , ηN } that connects x1 and x2 (resp., xr and xr+1). By the induction hypothesis, given
ηR (resp., ηL), the conditional law of the rest of the curves is the unique global (N −1)-SLEκ

associated to α/{r, r + 1} (resp., α/{1,2}). This gives the conditional law of ηL given ηR and
vice versa. One can then use the argument from the proof of Proposition 3.2, considering
Markov chains sampling ηL and ηR from their conditional laws—one only has to replace
Lemma 3.5 by Lemma 4.8 and Lemma 3.6 by the following Lemma 4.11 for N − 1. �

The next technical lemma can be thought of as an analogue of Lemma 3.6. To state it,
we fix α ∈ LPN such that {1,2} ∈ α and let (�;x1, . . . , x2N) be a bounded polygon. Also, if
(η1, . . . , ηN) is a family of random curves with the law of a global N -SLEκ associated to α,
and if η := η1 is the curve connecting x1 and x2, then we denote by Q

{1,2}
α (�;x1, . . . , x2N)

the law of η.
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LEMMA 4.11. Assume that there exists a unique global N -SLE16/3 associated to α. Let
�L ⊂ U , Ũ ⊂ � be subpolygons such that �L and � agree in a neighborhood of the bound-
ary arc (x1x2). Suppose that η ∼ Q

{1,2}
α (U ;x1, . . . , x2N) and η̃ ∼ Q

{1,2}
α (Ũ ;x1, . . . , x2N).

Then there exists a coupling (η, η̃) such that P[η = η̃ ⊂ �L] ≥ θ , where the constant
θ = θ(�,�L) > 0 is independent of U and Ũ .

PROOF. Let (�δ;xδ
1, . . . , x

δ
2N) be discrete polygons converging to (�;x1, . . . , x2N) in

the Carathéodory sense, and denote by Uδ , Ũ δ , and (�L)δ the corresponding approximations
of U , Ũ , and �L. Also, let (ηδ

1, . . . , η
δ
N) (resp., (η̃δ

1, . . . , η̃
δ
N)) be the collection of interfaces

in the critical random-cluster model on Uδ (resp., Ũ δ) with alternating boundary conditions
(1.2), and let ηδ := ηδ

1 and η̃δ := η̃δ
1 be the curves connecting xδ

1 and xδ
2. By the assumptions,

we know that, as δ → 0, the law of ηδ (resp., η̃δ) conditionally on {ϑδ = α} (resp., {ϑ̃δ = α})
converges to Q

{1,2}
α (U ;x1, . . . , x2N) (resp., Q{1,2}

α (Ũ ;x1, . . . , x2N)). Thus, it is sufficient to
show that there exists a coupling (ηδ, η̃δ) such that P[ηδ = η̃δ ⊂ (�L)δ] ≥ θ for δ small
enough, where the constant θ = θ(�,�L) > 0 is independent of U and Ũ .

Since �L agrees with � in a neighborhood of (x1x2), we can find boundary points y1
and y2 such that y1, x1, x2, y2 lie in counterclockwise order along ∂� and �L agrees with
� in a neighborhood of (y1y2). Now, we have wired boundary conditions on the arc (xδ

1x
δ
2)

and free boundary conditions on the arcs (xδ
2x

δ
3) and (xδ

2Nxδ
1). Define Cδ∗ to be the event that

there exists a dual-open path in (�L)δ from (xδ
2yδ

2) to (yδ
1x

δ
1). Then, by the domain Markov

property, there exists a coupling of ηδ and η̃δ such that the probability of {ηδ = η̃δ ⊂ (�L)δ}
is bounded from below by the minimum of P[Cδ∗] and P̃[Cδ∗], where P and P̃ denote the
probability measures of the random-cluster models on Uδ and Ũ δ with alternating boundary
conditions (1.2). Furthermore, as a consequence of Proposition 4.2, the domain Markov prop-
erty, and the FKG inequality (4.1), we obtain P[Cδ∗] ≥ θ(�,�L) > 0 (and likewise for Ũ ).3 In
particular, the lower bound θ(�,�L) is uniform over U (resp., Ũ ) and δ. By the convergence
of ηδ and η̃δ , we obtain a coupling of η and η̃ such that the probability of {η = η̃ ⊂ �L} is
bounded from below by θ(�,�L). �

By the above, we have now completed the proof of Proposition 1.4 (with q = 2 and κ =
16/3). We summarize the key ingredients in the proof in the following remark.

REMARK 4.12. The proof of Proposition 1.4 consists of Lemmas 4.5–4.11 and Proposi-
tions 4.9 and 4.10.

• Lemmas 4.5, 4.6 and 4.7 require the RSW estimate from Proposition 4.2.
• Lemma 4.8 requires the convergence of a single interface, given by Conjecture 4.3.
• The proof of Proposition 4.9 uses Lemma 4.8. Assuming Lemma 4.8, this works for all

κ ∈ (4,8).
• Note also that the proof of Proposition 4.9 uses the duality of the SLEκ , which is known

for all κ ∈ (4,8) [9, 29].
• The proofs of Proposition 4.10 and Lemma 4.11 use the convergence of the multiple FK-

Ising interfaces; thus they also require Lemmas 4.5–4.8 and Proposition 4.9 as an input.

3Note that, here we only need the RSW Proposition 4.2, because the lower bound θ is allowed to depend on

the domains �, �L. To derive θ(�,�L) from Proposition 4.2, one can draw a zigzag path of rectangles so that
the first one intersects the boundary arc (yδ

1xδ
1), the last one intersects the boundary arc (xδ

2yδ
2), and the middle

ones are inside (�L)δ , and observe that dual crossings of all these rectangles give a dual crossing from (yδ
1xδ

1) to

(xδ
2yδ

2).
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Overall, the proofs of these results require the RSW estimate from Proposition 4.2 and the
convergence a single interface (Conjecture 4.3). Therefore, knowing Conjecture 4.3, the anal-
ogous conclusions to Proposition 1.4 would extend to other values of κ .

4.4. The Ising model. Let G be a finite subgraph of Z2. The Ising model on G with free
boundary condition is a random assignment σ ∈ {�,⊕}V (G) of spins σv ∈ {�,⊕}, where σv

denotes the spin at the vertex v ∈ V (G). The Hamiltonian is defined by

H free
G (σ ) = − ∑

v∼w

σvσw.

The probability measure of the Ising model is given by the Boltzmann measure with Hamil-
tonian H free

G and inverse-temperature β > 0:

μfree
β,G[σ ] = exp(−βH free

G (σ ))

Zfree
β,G

, where Zfree
β,G = ∑

σ

exp
(−βH free

G (σ )
)
.

Also, for τ ∈ {�,⊕}Z2
, we define the Ising model with boundary condition τ via the Hamil-

tonian

Hτ
G (σ ) = − ∑

v∼w,
〈v,w〉∩G �=∅

σvσw, where σv = τv for all v /∈ G.

In particular, if (G;v,w) is a discrete Dobrushin domain, we may consider the Ising model
with the following Dobrushin boundary conditions (domain-wall boundary conditions): we
set ⊕ along the arc (vw), and � along the complementary arc (wv). More generally, we
will consider the alternating boundary conditions (1.1), where ⊕ and � alternate along the
boundary as in Figure 1.

As in the case of the random-cluster model, we have the following useful domain Markov
property. Let G ⊂ G′ be two finite subgraphs of Z2. Fix τ ∈ {�,⊕}Z2

and β > 0. Let X be a
random variable, which is measurable with respect to the status of the vertices in the smaller
graph G. Then we have

μτ
β,G′

[
X|σv = τv for all v ∈ G′ \ G] = μτ

β,G[X].
The planar Ising model exhibits an order-disorder phase transition at a certain critical tem-

perature: above this temperature, the configurations are disordered and below it, one observes
large clusters of equal spins. At criticality, the configurations show self-similar behavior, and
indeed, the critical planar Ising model is conformally invariant in the scaling limit [5–7, 14,
39, 40]. On the square lattice, the critical value of β is

βc = 1

2
log(1 + √

2).

In Proposition 1.3, we consider the scaling limit of Ising interfaces at criticality. Let
(�δ∗;xδ∗, yδ∗) be discrete Dobrushin domains, δ > 0, and consider the critical Ising model
on the duals (�δ∗;xδ∗, yδ∗) with Dobrushin boundary conditions. Let xδ� and yδ� be vertices on
the medial lattice �δ� nearest to xδ∗ and yδ∗ . Then we define the Ising interface as follows. It
starts from xδ�, traverses on the primal lattice �δ , and turns at every vertex of �δ in such a
way that it always has dual-vertices with spin ⊕ on its left and spin � on its right. If there is
an indetermination when arriving at a vertex (this may happen on the square lattice), it turns
left. See also Figure 8 for an illustration. This interface converges weakly as δ → 0 to the
chordal SLEκ with κ = 3 (in the topology of Section 1.2).
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FIG. 8. A spin configuration of the Ising model on a polygon with six marked points x1, . . . , x6 on the boundary,
with alternating boundary conditions. There are three interfaces starting from x2, x4, and x6, illustrated in red,
blue and orange, respectively.

THEOREM 4.13 ([5], Theorem 1). Let (�δ∗;xδ∗, yδ∗) be a sequence of discrete Dobrushin
domains converging to a Dobrushin domain (�;x, y) in the Carathéodory sense. Then, as
δ → 0, the interface of the critical Ising model on (�δ∗, xδ∗, yδ∗) with Dobrushin boundary
conditions converges weakly to the chordal SLEκ in � connecting x and y with κ = 3.

Using this result, we will prove that multiple interfaces also converge in the scaling limit to
global multiple SLE3 curves. Abusing and lightening notation, let us write �δ for �δ , (��)δ ,
or (�∗)δ , and xδ for xδ , (x�)δ , or (x∗)δ . Let the polygons (�δ;xδ

1, . . . , x
δ
2N) converge to

(�;x1, . . . , x2N) as δ → 0 in the Carathéodory sense. Consider the critical Ising model on �δ

with alternating boundary conditions (1.1). For j ∈ {1, . . . ,N}, let ηδ
j be the interface starting

from xδ
2j that separates ⊕ from �. Then the collection of interfaces (ηδ

1, . . . , η
δ
N) connects the

boundary points xδ
1, . . . , x

δ
2N forming a planar link pattern ϑδ ∈ LPN . Proposition 1.3 asserts

that conditionally on the event {ϑδ = α}, the law of the collection (ηδ
1, . . . , η

δ
N) converges

weakly as δ → 0 to a global N -SLE3 associated to α. The proof of this is very similar to that
of the FK-Ising model (Proposition 1.4)—we summarize it below.

PROOF OF PROPOSITION 1.3. The uniqueness of the limit follows from Theorem 1.2
(the global N -SLE3 is unique). For the subsequential convergence, we follow the same lines
as in the proof of Proposition 1.4. Recall the summary of its proof from Remark 4.12. First,
for Lemmas 4.5 and 4.6, we need a RSW type estimate for the critical Ising model. This can
be obtained from Proposition 4.2 via the so-called Edwards–Sokal coupling, as explained in
[5], Remark 4. Then the proof of Lemma 4.7 holds for the critical Ising model and κ = 3.
Therefore, we conclude that for any convergent subsequence of (η

δn

1 , . . . , η
δn

N )δn>0, the limit
must be a global multiple N -SLE3. Since the global N -SLE3 is unique due to Theorem 1.2,
we readily establish the convergence of the whole sequence to this global N -SLE3. Finally,
the asserted marginal law of ηj follows from Lemma 3.12. �
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APPENDIX: INTERSECTION OF TWO FRACTALS

For use in Section 4, we record in this Appendix some properties of random subsets of the
boundary of the unit disc U = {z ∈ C : |z| ≤ 1}. In spite of stating the results for U, we may
as well apply the following lemma for the domain � = [0, ] × [0,1] as we do in Section 4,
by conformal invariance of the SLEκ .

LEMMA A.1. Suppose E is a random subset of ∂U satisfying the following: there are
constants C > 0 and β ∈ (0,1) such that, for any interval I ⊂ ∂U, we have

P[E ∩ I �=∅] ≤ C|I |β.

Then, for any subset A ⊂ ∂U, the following hold:

1. If dim(A) < β , then

A ∩ E = ∅, almost surely.

2. If dim(A) ≥ β , then

dim(A ∩ E) ≤ dim(A) − β, almost surely.

This lemma is a part of [33], Lemma 2.3, where the authors give a more complete de-
scription of the set A ∩ E . The above cases are sufficient to our purposes in the proof of
Proposition 4.9, so we include their proofs in this Appendix.

PROOF OF ITEM 1. Since β > dim(A), for any ε > 0, there exists a cover
⋃

i Ii of A

such that
∑

i |Ii |β ≤ ε. Therefore,

P[A ∩ E �= ∅] ≤ ∑
i

P[Ii ∩ E �= ∅] ≤ C
∑
i

|Ii |β ≤ Cε,

almost surely. Letting ε → 0, we see that P[A ∩ E �= ∅] = 0. �

PROOF OF ITEM 2. For any γ > dim(A) − β , there exists a cover
⋃

i Ii of A such that∑
i |Ii |β+γ < ∞. Hence, we have

E

[∑
i

|Ii |γ 1{Ii∩E �=∅}
]

= ∑
i

|Ii |γP[Ii ∩ E �=∅] ≤ C
∑
i

|Ii |β+γ < ∞,

almost surely. Thus, the collection {Ii : Ii ∩ E �= ∅} is a cover of A ∩ E and
∑

i |Ii |γ ×
1{Ii∩E �=∅} < ∞, almost surely. Therefore, we have

dim(A ∩ E) ≤ γ, almost surely.

As this holds for any γ > dim(A) − β , we have dim(A ∩ E) ≤ dim(A) − β , almost surely.
�
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