Alcove random walks, k-Schur functions and the minimal boundary of the k-bounded partition poset
Abstract
We use k-Schur functions to get the minimal boundary of the k-bounded partition poset. This permits to describe the central random walks on affine Grassmannian elements of type A and yields a polynomial expression for their drift. We also recover Rietsch's parametriza-tion of totally nonnegative unitriangular Toeplitz matrices without using quantum cohomology of flag varieties. All the homeomorphisms we define can moreover be made explicit by using the combinatorics of k-Schur functions and elementary computations based on Perron-Frobenius theorem.
Origin | Files produced by the author(s) |
---|
Loading...