Resistance growth of branching random networks - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2018

Resistance growth of branching random networks

Résumé

Consider a rooted infinite Galton-Watson tree with mean offspring number $m>1$, and a collection of i.i.d. positive random variables $\xi_e$ indexed by all the edges in the tree. We assign the resistance $m^d \xi_e$ to each edge $e$ at distance $d$ from the root. In this random electric network, we study the asymptotic behavior of the effective resistance and conductance between the root and the vertices at depth $n$. Our results generalize an existing work of Addario-Berry, Broutin and Lugosi on the binary tree to random branching networks.
Fichier principal
Vignette du fichier
resistance_growth.pdf (447.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01688502 , version 1 (19-01-2018)
hal-01688502 , version 2 (18-05-2018)

Identifiants

Citer

Dayue Chen, Yueyun Hu, Shen Lin. Resistance growth of branching random networks. Electronic Journal of Probability, 2018, 23, pp.1-17. ⟨10.1214/18-EJP179⟩. ⟨hal-01688502v2⟩
157 Consultations
1224 Téléchargements

Altmetric

Partager

More