Resistance growth of branching random networks
Résumé
Consider a rooted infinite Galton-Watson tree with mean offspring number $m>1$, and a collection of i.i.d. positive random variables $\xi_e$ indexed by all the edges in the tree. We assign the resistance $m^d \xi_e$ to each edge $e$ at distance $d$ from the root. In this random electric network, we study the asymptotic behavior of the effective resistance and conductance between the root and the vertices at depth $n$. Our results generalize an existing work of Addario-Berry, Broutin and Lugosi on the binary tree to random branching networks.
Domaines
Probabilités [math.PR]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...