Cascade of convolutional neural networks for lung texture classification: overcoming ontological overlapping
Résumé
The infiltrative lung diseases are a class of irreversible, non-neoplastic lung pathologies requiring regular follow-up with CT imaging. Quantifying the evolution of the patient status imposes the development of automated classification tools for lung texture. Traditionally, such classification relies on a two-dimensional analysis of axial CT images. This paper proposes a cascade of the existing CNN based CAD system, specifically tuned-up. The advantage of using a deep learning approach is a better regularization of the classification output. In a preliminary evaluation, the combined approach was tested on a 13 patient database of various lung pathologies, showing an increase of 10% in True Positive Rate (TPR) with respect to the best suited state of the art CNN for this task