Characterizing volume via cone duality
Résumé
For divisors over smooth projective varieties, we show that the volume can be characterized by the duality between the pseudo-effective cone of divisors and the movable cone of curves. Inspired by this result, we define and study a natural intersection-theoretic volume functional for 1-cycles over compact Kähler manifolds. In particular, for numerical equivalence classes of curves over projective varieties, it is closely related to the mobility functional studied by Lehmann.