Second order models for optimal transport and cubic splines on the Wasserstein space - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Second order models for optimal transport and cubic splines on the Wasserstein space

Résumé

On the space of probability densities, we extend the Wasserstein geodesics to the case of higher-order interpolation such as cubic spline interpolation. After presenting the natural extension of cubic splines to the Wasserstein space, we propose simpler approach, similarly to Brenier's generalized Euler solutions. Our method is based on the relaxation of the variational problem on the path space. We propose an efficient implementation based on multimarginal optimal transport and entropic regularization in 1D and 2D. Our framework also enables extrapolation in the Wasserstein geodesic via a natural convex relaxation.
Fichier principal
Vignette du fichier
SplinesWasserstein.pdf (1.13 Mo) Télécharger le fichier
Loading...

Dates et versions

hal-01682107 , version 1 (12-01-2018)
hal-01682107 , version 2 (25-07-2018)

Identifiants

Citer

Jean-David Benamou, Thomas Gallouët, François-Xavier Vialard. Second order models for optimal transport and cubic splines on the Wasserstein space. 2018. ⟨hal-01682107v1⟩
438 Consultations
483 Téléchargements

Altmetric

Partager

More