Second order models for optimal transport and cubic splines on the Wasserstein space - Archive ouverte HAL
Article Dans Une Revue Foundations of Computational Mathematics Année : 2019

Second order models for optimal transport and cubic splines on the Wasserstein space

Résumé

On the space of probability densities, we extend the Wasserstein geodesics to the case of higher-order interpolation such as cubic spline interpolation. After presenting the natural extension of cubic splines to the Wasserstein space, we propose a simpler approach based on the relaxation of the variational problem on the path space. We explore two different numerical approaches, one based on multi-marginal optimal transport and entropic regularization and the other based on semi-discrete optimal transport.
Fichier principal
Vignette du fichier
SplinesWasserstein_final.pdf (1.79 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01682107 , version 1 (12-01-2018)
hal-01682107 , version 2 (25-07-2018)

Identifiants

Citer

Jean-David Benamou, Thomas Gallouët, François-Xavier Vialard. Second order models for optimal transport and cubic splines on the Wasserstein space. Foundations of Computational Mathematics, 2019, ⟨10.1007/s10208-019-09425-z⟩. ⟨hal-01682107v2⟩
438 Consultations
483 Téléchargements

Altmetric

Partager

More