Inoue surfaces and the Chern–Ricci flow - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2016

Inoue surfaces and the Chern–Ricci flow

Résumé

We investigate the Chern-Ricci flow, an evolution equation of Hermitian metrics, on Inoue surfaces. These are non-Kahler compact complex surfaces of type Class VII. We show that, after an initial conformal change, the flow always collapses the Inoue surface to a circle at infinite time, in the sense of Gromov-Hausdorff.

Dates et versions

hal-01680410 , version 1 (10-01-2018)

Identifiants

Citer

Shouwen Fang, Valentino Tosatti, Ben Weinkove, Tao Zheng. Inoue surfaces and the Chern–Ricci flow. Journal of Functional Analysis, 2016, 271 (11), pp.3162 - 3185. ⟨10.1016/j.jfa.2016.08.013⟩. ⟨hal-01680410⟩
111 Consultations
0 Téléchargements

Altmetric

Partager

More