Asymptotic stability of the critical Fisher-KPP front using pointwise estimates - Archive ouverte HAL
Article Dans Une Revue Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées Année : 2018

Asymptotic stability of the critical Fisher-KPP front using pointwise estimates

Résumé

We propose a simple alternative proof of a famous result of Gallay regarding the nonlinear asymptotic stability of the critical front of the Fisher-KPP equation which shows that perturbations of the critical front decay algebraically with rate $t^{-3/2}$ in a weighted $L^\infty$ space. Our proof is based on pointwise semigroup methods and the key remark that the faster algebraic decay rate $t^{-3/2}$ is a consequence of the lack of an embedded zero of the Evans function at the origin for the linearized problem around the critical front.
Fichier principal
Vignette du fichier
notesKPP.pdf (662.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01676017 , version 1 (05-01-2018)

Identifiants

  • HAL Id : hal-01676017 , version 1

Citer

Grégory Faye, Matt Holzer. Asymptotic stability of the critical Fisher-KPP front using pointwise estimates. Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées, In press. ⟨hal-01676017⟩
80 Consultations
91 Téléchargements

Partager

More