Generalization of a formula of Wolpert for balanced geodesic graphs on closed hyperbolic surfaces - Archive ouverte HAL
Article Dans Une Revue Annales Henri Lebesgue Année : 2020

Generalization of a formula of Wolpert for balanced geodesic graphs on closed hyperbolic surfaces

Andrea Seppi

Résumé

A well-known theorem of Wolpert shows that the Weil–Petersson symplectic form on Teichmüller space, computed on two infinitesimal twists along simple closed geodesics on a fixed hyperbolic surface, equals the sum of the cosines of the intersection angles. We define an infinitesimal deformation starting from a more general object, namely a balanced geodesic graph, by which any tangent vector to Teichmüller space can be represented. We then prove a generalization of Wolpert's formula for these deformations. In the case of simple closed curves, we recover the theorem of Wolpert.
Fichier principal
Vignette du fichier
generalization wolpert preprint.pdf (257.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01675473 , version 1 (04-01-2018)
hal-01675473 , version 2 (12-11-2020)

Identifiants

Citer

François Fillastre, Andrea Seppi. Generalization of a formula of Wolpert for balanced geodesic graphs on closed hyperbolic surfaces. Annales Henri Lebesgue, 2020, 3, pp.873-899. ⟨10.5802/ahl.48⟩. ⟨hal-01675473v1⟩
111 Consultations
106 Téléchargements

Altmetric

Partager

More