Secondary characteristic classes and the Euler class. - Archive ouverte HAL
Article Dans Une Revue Documenta Mathematica Année : 2015

Secondary characteristic classes and the Euler class.

Jean Fasel

Résumé

We discuss secondary (and higher) characteristic classes for algebraic vector bundles with trivial top Chern class. We then show that if $X$ is a smooth affine scheme of dimension $d$ over a field $k$ of finite $2$-cohomological dimension (with $\mathrm{char}(k)\neq 2$) and $E$ is a rank $d$ vector bundle over $X$, vanishing of the Chow-Witt theoretic Euler class of $E$ is equivalent to vanishing of its top Chern class and these higher classes. We then derive some consequences of our main theorem when $k$ is of small $2$-cohomological dimension.
Fichier non déposé

Dates et versions

hal-01674694 , version 1 (03-01-2018)

Identifiants

  • HAL Id : hal-01674694 , version 1

Citer

Jean Fasel, Aravind Asok. Secondary characteristic classes and the Euler class.. Documenta Mathematica, 2015, Vol. Extra Volume, pp.7-29. ⟨hal-01674694⟩

Collections

CNRS FOURIER INSMI
60 Consultations
0 Téléchargements

Partager

More