Diffusion-approximation for a kinetic equation with perturbed velocity redistribution process
Résumé
We derive the hydrodynamic limit of a kinetic equation with a stochastic, short range perturbation of the velocity operator. Under some mixing hypotheses on the stochastic perturbation, we establish a diffusion-approximation result: the limit we obtain is a parabolic stochastic partial differential equation on the macroscopic parameter, the density here.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...