Efficient and large-scale land cover classification using multiscale image analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Efficient and large-scale land cover classification using multiscale image analysis

Résumé

While popular solutions exist for land cover mapping, they become intractable when in a large-scale context (e.g. VHR mapping at the European scale). In this paper, we consider a popular classification scheme, namely combination of Differential Attribute Profiles and Random Forest. We then introduce new developments and optimizations to make it: i) computationally efficient; ii) memory efficient ; iii) accurate at a very large scale; and given its efficiency, iv) able to cope with strong differences in the observed landscapes through fast retraining. We illustrate the relevance of our proposal by reporting computing time obtained on a VHR image.
Fichier principal
Vignette du fichier
bids2017tree.pdf (125.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01672868 , version 1 (13-11-2019)

Identifiants

  • HAL Id : hal-01672868 , version 1

Citer

François Merciol, Thibaud Balem, Sébastien Lefèvre. Efficient and large-scale land cover classification using multiscale image analysis. Big Data from Space, 2017, Toulouse, France. ⟨hal-01672868⟩
205 Consultations
126 Téléchargements

Partager

More