Feature Profiles from Attribute Filtering for Classification of Remote Sensing Images - Archive ouverte HAL
Article Dans Une Revue IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Année : 2018

Feature Profiles from Attribute Filtering for Classification of Remote Sensing Images

Résumé

This paper proposes a novel extension of morphological attribute profiles (APs) for classification of remote sensing data. In standard AP-based approaches, an input image is characterized by a set of filtered images achieved from the sequential application of attribute filters based on the image tree representation. Hence, only pixel values (i.e. gray levels) are employed to form the output profiles. In this paper, during the attribute filtering process, instead of outputting the gray levels, we propose to extract both statistical and geometrical features from the connected components (w.r.t tree nodes) to build the so-called feature profiles (FPs). These features are expected to better characterize the object or region encoded by each connected component. They are then exploited to classify remote sensing images. To evaluate the effectiveness of the proposed approach, supervised classification using the random forest classifier is conducted on the panchromatic Reykjavik image as well as the hyperspectral Pavia University data. Experimental results show the FPs provide a competitive performance compared against standard APs and thus constitute a promising alternative.
Fichier principal
Vignette du fichier
jstars2018fp.pdf (6.56 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01672852 , version 1 (13-11-2019)

Identifiants

Citer

Minh-Tan Pham, Erchan Aptoula, Sébastien Lefèvre. Feature Profiles from Attribute Filtering for Classification of Remote Sensing Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (1), pp.249-256. ⟨10.1109/JSTARS.2017.2773367⟩. ⟨hal-01672852⟩
168 Consultations
89 Téléchargements

Altmetric

Partager

More