MODULAR INEQUALITIES FOR THE MAXIMAL OPERATOR IN VARIABLE LEBESGUE SPACES - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

MODULAR INEQUALITIES FOR THE MAXIMAL OPERATOR IN VARIABLE LEBESGUE SPACES

Résumé

A now classical result in the theory of variable Lebesgue spaces due to Lerner [A. K. Lerner, On modular inequalities in variable $L^p$ spaces, Archiv der Math. 85 (2005), no. 6, 538-543] is that a modular inequality for the Hardy-Littlewood maximal function in $L^{p(\cdot)}(\mathbb{R}^n)$ holds if and only if the exponent is constant. We generalize this result and give a new and simpler proof. We then find necessary and sufficient conditions for the validity of the weaker modular inequality \[ \int_\Omega Mf(x)^{p(x)}\,dx \leq c_1 \int_\Omega |f(x)|^{q(x)}\,dx + c_2, \] where $c_1,\,c_2$ are non-negative constants and $\Omega$ is any measurable subset of $\mathbb{R}^n$. As a corollary we get sufficient conditions for the modular inequality \[ \int_\Omega |Tf(x)|^{p(x)}\,dx \ \leq c_1 \int_\Omega |f(x)|^{q(x)}\,dx + c_2, \] where $T$ is any operator that is bounded on $L^p(\Omega)$, $1<p<\infty$.
Fichier principal
Vignette du fichier
DCUDFF2-bis.pdf (357.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01665500 , version 1 (16-12-2017)

Identifiants

Citer

David Cruz-Uribe, Giovanni Di Fratta, Alberto Fiorenza. MODULAR INEQUALITIES FOR THE MAXIMAL OPERATOR IN VARIABLE LEBESGUE SPACES. 2017. ⟨hal-01665500⟩
163 Consultations
134 Téléchargements

Altmetric

Partager

More