Raviart Thomas Petrov-Galerkin Finite Elements - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Raviart Thomas Petrov-Galerkin Finite Elements

Résumé

The general theory of Babuška ensures necessary and sufficient conditions for a mixed problem in classical or Petrov-Galerkin form to be well posed in the sense of Hadamard. Moreover, the mixed method of Raviart-Thomas with low-level elements can be interpreted as a finite volume method with a non-local gradient. In this contribution, we propose a variant of type Petrov-Galerkin to ensure a local computation of the gradient at the interfaces of the elements. The in-depth study of stability leads to a specific choice of the test functions. With this choice, we show on the one hand that the mixed Petrov-Galerkin obtained is identical to the finite volumes scheme " volumes finis à 4 points " ("VF4 ") of Faille, Galloüet and Herbin and to the condensation of mass approach developed by Baranger, Maitre and Oudin. On the other hand, we show the stability via an inf-sup condition and finally the convergence with the usual methods of mixed finite elements.
Fichier principal
Vignette du fichier
DGP_FVCA8.pdf (151.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01663592 , version 1 (14-12-2017)
hal-01663592 , version 2 (19-12-2017)

Identifiants

Citer

François Dubois, Isabelle Greff, Charles Pierre. Raviart Thomas Petrov-Galerkin Finite Elements. Finite Volumes for Complex applications 8, Jun 2017, Lille, France. pp.341-349, ⟨10.1007/978-3-319-57397-7_27⟩. ⟨hal-01663592v2⟩
149 Consultations
103 Téléchargements

Altmetric

Partager

More