One Class Splitting Criteria for Random Forests - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

One Class Splitting Criteria for Random Forests

Résumé

Random Forests (RFs) are strong machine learning tools for classification and regression. However, they remain supervised algorithms, and no extension of RFs to the one-class setting has been proposed, except for techniques based on second-class sampling. This work fills this gap by proposing a natural methodology to extend standard splitting criteria to the one-class setting, structurally generalizing RFs to one-class classification. An extensive benchmark of seven state-of-the-art anomaly detection algorithms is also presented. This empirically demonstrates the relevance of our approach.

Domaines

Autre
Fichier principal
Vignette du fichier
Goix_19281.pdf (589.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01662421 , version 1 (13-12-2017)

Identifiants

  • HAL Id : hal-01662421 , version 1
  • OATAO : 19281

Citer

Nicolas Goix, Nicolas Drougard, Romain Brault, Mael Chiapino. One Class Splitting Criteria for Random Forests. The 9th Asian Conference on Machine Learning, Nov 2017, Seoul, South Korea. pp. 1-16. ⟨hal-01662421⟩
165 Consultations
235 Téléchargements

Partager

More