Nonlinear Microstructured Material to Reduce Noise and Vibrations at Low Frequencies - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physics: Conference Series Année : 2016

Nonlinear Microstructured Material to Reduce Noise and Vibrations at Low Frequencies

Gwendal Cumunel
Denis Duhamel

Résumé

At low frequencies, for which the wavelengths are wide, the acoustic waves and the mechanical vibrations cannot easily be reduced in the structures at macroscale by using dissipative materials, contrarily to the middle- and high-frequency ranges. The final objective of this work is to reduce the vibrations and the induced noise on a broad low-frequency band by using a microstructured material by inclusions that are randomly arranged in the material matrix. The dynamical regimes of the inclusions will be imposed in the nonlinear domain in order that the energy be effectively pumped over a broad frequency band around the resonance frequency, due to the nonlinearity. The first step of this work is to design and to analyze the efficiency of an inclusion, which is made up of a hollow frame including a point mass centered on a beam. This inclusion is designed in order to exhibit nonlinear geometric effects in the low-frequency band that is observed. For this first step, the objective is to develop the simplest mechanical model that has the capability to roughly predict the experimental results that are measured. The second step, which is not presented in the paper, will consist in developing a more sophisticated nonlinear dynamical model of the inclusion. In this paper, devoted to the first step, it is proved that the nonlinearity induces an attenuation on a broad frequency band around the resonance, contrarily to its linear behavior for which the attenuation is only active in a narrow frequency band around the resonance. We will present the design in terms of geometry, dimension and materials for the inclusion, the experimental manufacturing of this system realized with a 3D printing system, and the experimental measures that have been performed. We compare the prevision given by the stochastic computational model with the measurements. The results obtained exhibit the physical attenuation over a broad low-frequency band, which were expected.

Dates et versions

hal-01657607 , version 1 (06-12-2017)

Identifiants

Citer

Deborah Lavazec, Gwendal Cumunel, Denis Duhamel, Christian Soize, Anas Batou. Nonlinear Microstructured Material to Reduce Noise and Vibrations at Low Frequencies. Journal of Physics: Conference Series, 2016, 744, ⟨10.1088/1742-6596/744/1/012190⟩. ⟨hal-01657607⟩
106 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More