Normal convergence of non-localised geometric functionals and shot noise excursions - Archive ouverte HAL
Article Dans Une Revue The Annals of Applied Probability Année : 2019

Normal convergence of non-localised geometric functionals and shot noise excursions

Résumé

This article presents a complete second order theory for a large class of geometric functionals on homogeneous Poisson input. In particular, the results don’t require the existence of a radius of stabilisation. Hence they can be applied to geometric functionals of spatial shot-noise fields excursions such as volume, perimeter, or Euler characteristic (the method still applies to stabilising functionals). More generally, it must be checked that a local contribution to the functional is not strongly affected under a perturbation of the input far away. In this case the exact asymptotic variance is given, as well as the likely optimal speed of convergence in the central limit theorem. This goes through a general mixing-type condition that adapts nicely to both proving asymptotic normality and that variance is of volume order.
Fichier principal
Vignette du fichier
berry-esseen.pdf (459.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01654056 , version 1 (02-12-2017)
hal-01654056 , version 2 (30-06-2018)
hal-01654056 , version 3 (13-12-2018)

Identifiants

Citer

Raphaël Lachièze-Rey. Normal convergence of non-localised geometric functionals and shot noise excursions. The Annals of Applied Probability, 2019, 29 (5), ⟨10.1214/18-AAP1445⟩. ⟨hal-01654056v3⟩
196 Consultations
191 Téléchargements

Altmetric

Partager

More