Early Recognition of Handwritten Gestures based on Multi-classifier Reject Option
Résumé
In this paper a multi-classifier method for early recognition of handwritten gesture is presented. Unlike the other works which study the early recognition problem related to the time, we propose to make the recognition according to the quantity of incremental drawing of handwritten gestures. We train a segment length based multi-classifier for the task of recognizing the handwritten touch gesture as early as possible. To deal with potential similar parts at the beginning of different gestures, we introduce a reject option to postpone the decision until ambiguity persists. We report results on two freely available datasets: MGSet and ILG. These results demonstrate the improvement we obtained by using the proposed reject option for the early recognition of handwritten gestures.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...