Majorization-Minimization Algorithms for Maximum Likelihood Estimation of Magnetic Resonance Images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Majorization-Minimization Algorithms for Maximum Likelihood Estimation of Magnetic Resonance Images

Résumé

This paper addresses maximum likelihood estimation of images corrupted by a Rician noise, with the aim to propose an efficient optimization method. The application example is the restoration of magnetic resonance images. Starting from the fact that the criterion to minimize is non-convex but unimodal, the main contribution of this work is to propose an optimization scheme based on the majorization-minimization framework after introducing a variable change allowing to get a strictly convex criterion. The resulting descent algorithm is compared to the classical MMdescent algorithm and its performances are assessed using synthetic and real MR images.
Fichier principal
Vignette du fichier
IPTA_final.pdf (219.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01653033 , version 1 (18-04-2022)

Identifiants

Citer

Qianyi Jiang, Said Moussaoui, Jérôme Idier, Guylaine Collewet, Mai Xu. Majorization-Minimization Algorithms for Maximum Likelihood Estimation of Magnetic Resonance Images. Seventh IEEE International Conference on Image Processing Theory, Tools and Applications (IPTA'2017), Nov 2017, Montréal, Canada. pp.6, ⟨10.1109/ipta.2017.8310150⟩. ⟨hal-01653033⟩
203 Consultations
102 Téléchargements

Altmetric

Partager

More