A forward–backward random process for the spectrum of 1D Anderson operators - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

A forward–backward random process for the spectrum of 1D Anderson operators

Résumé

We give a new expression for the law of the eigenvalues of the discrete Anderson model on the finite interval $[0,N]$, in terms of two random processes starting at both ends of the interval. Using this formula, we deduce that the tail of the eigenvectors behaves approximately like $\exp(\sigma B_{|n-k|}-\gamma\frac{|n-k|}{4})$ where $B_{s}$ is the Brownian motion and $k$ is uniformly chosen in $[0,N]$ independently of $B_{s}$. A similar result has recently been shown by B. Rifkind and B. Virag in the critical case, that is, when the random potential is multiplied by a factor $\frac{1}{\sqrt{N}}$
Fichier principal
Vignette du fichier
W2formOfEigenvectors.pdf (463.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01651812 , version 1 (29-11-2017)

Identifiants

Citer

Raphael Ducatez. A forward–backward random process for the spectrum of 1D Anderson operators. 2017. ⟨hal-01651812v1⟩
347 Consultations
85 Téléchargements

Altmetric

Partager

More