The Hoeffding-Sobol decomposition in extreme value theory. Exploring the asymptotic dependence structure. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

The Hoeffding-Sobol decomposition in extreme value theory. Exploring the asymptotic dependence structure.

Résumé

All characterizations of non degenerate multivariate tail dependence structure are both functional and non finite dimensional, as the stable tail dependence function $\ell$. Taking advantage of the Hoeffding-Sobol decomposition of $\ell$, we derive new measures to summarize the strength of dependence in a multivariate extreme value analysis. The tail superset importance coefficients provide a pairwise ordering of the asymptotic dependence structure. We then define the tail dependograph in which vertices represent components of the vector of interest and where edge weights are proportional to the tail superset importance coefficients. For inference, as soon as an estimator of is given, it yields an estimation of the tail dependograph. In particular, the empirical tail superset importance coefficient is rank-based statistics and its asymptotic behavior is stated. These new concepts are illustrated with several examples including theoretical models through simulation and real data, which shows that our methodology works well in practice.
Fichier principal
Vignette du fichier
tail-dependograph.pdf (6.66 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01649596 , version 1 (27-11-2017)
hal-01649596 , version 2 (27-02-2019)
hal-01649596 , version 3 (07-03-2019)

Identifiants

  • HAL Id : hal-01649596 , version 1

Citer

Cécile Mercadier, Olivier Roustant. The Hoeffding-Sobol decomposition in extreme value theory. Exploring the asymptotic dependence structure.. 2017. ⟨hal-01649596v1⟩
792 Consultations
333 Téléchargements

Partager

More