Quantum diffusion during inflation and primordial black holes - Archive ouverte HAL
Article Dans Une Revue Journal of Cosmology and Astroparticle Physics Année : 2017

Quantum diffusion during inflation and primordial black holes

Chris Pattison
  • Fonction : Auteur
Vincent Vennin
Hooshyar Assadullahi
  • Fonction : Auteur
David Wands
  • Fonction : Auteur

Résumé

We calculate the full probability density function (PDF) of inflationary curvature perturbations, even in the presence of large quantum backreaction. Making use of the stochastic-δ N formalism, two complementary methods are developed, one based on solving an ordinary differential equation for the characteristic function of the PDF, and the other based on solving a heat equation for the PDF directly. In the classical limit where quantum diffusion is small, we develop an expansion scheme that not only recovers the standard Gaussian PDF at leading order, but also allows us to calculate the first non-Gaussian corrections to the usual result. In the opposite limit where quantum diffusion is large, we find that the PDF is given by an elliptic theta function, which is fully characterised by the ratio between the squared width and height (in Planck mass units) of the region where stochastic effects dominate. We then apply these results to the calculation of the mass fraction of primordial black holes from inflation, and show that no more than ~ 1 e-fold can be spent in regions of the potential dominated by quantum diffusion. We explain how this requirement constrains inflationary potentials with two examples.
Fichier principal
Vignette du fichier
1707.00537v3.pdf (1.18 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01645600 , version 1 (09-10-2024)

Identifiants

Citer

Chris Pattison, Vincent Vennin, Hooshyar Assadullahi, David Wands. Quantum diffusion during inflation and primordial black holes. Journal of Cosmology and Astroparticle Physics, 2017, 10, pp.046. ⟨10.1088/1475-7516/2017/10/046⟩. ⟨hal-01645600⟩
133 Consultations
3 Téléchargements

Altmetric

Partager

More