Survival probability of random walks and Lévy flights on a semi-infinite line - Archive ouverte HAL
Article Dans Une Revue Journal of Physics A: Mathematical and Theoretical Année : 2017

Survival probability of random walks and Lévy flights on a semi-infinite line

Résumé

We consider a one-dimensional random walk (RW) with a continuous and symmetric jump distribution, $f(\eta)$, characterized by a L\'evy index $\mu \in (0,2]$, which includes standard random walks ($\mu=2$) and L\'evy flights ($0<\mu<2$). We study the survival probability, $q(x_0,n)$, representing the probability that the RW stays non-negative up to step $n$, starting initially at $x_0 \geq 0$. Our main focus is on the $x_0$-dependence of $q(x_0,n)$ for large $n$. We show that $q(x_0,n)$ displays two distinct regimes as $x_0$ varies: (i) for $x_0= O(1)$ ("quantum regime"), the discreteness of the jump process significantly alters the standard scaling behavior of $q(x_0,n)$ and (ii) for $x_0 = O(n^{1/\mu})$ ("classical regime") the discrete-time nature of the process is irrelevant and one recovers the standard scaling behavior (for $\mu =2$ this corresponds to the standard Brownian scaling limit). The purpose of this paper is to study how precisely the crossover in $q(x_0,n)$ occurs between the quantum and the classical regime as one increases $x_0$.
Fichier principal
Vignette du fichier
1704.05940 (630.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01644849 , version 1 (16-12-2023)

Identifiants

Citer

Satya Majumdar, Philippe Mounaix, Gregory Schehr. Survival probability of random walks and Lévy flights on a semi-infinite line. Journal of Physics A: Mathematical and Theoretical, 2017, 50 (46), ⟨10.1088/1751-8121/aa8d28⟩. ⟨hal-01644849⟩
140 Consultations
15 Téléchargements

Altmetric

Partager

More