Quasiconvexification of geometric integrals - Archive ouverte HAL
Article Dans Une Revue Annali di Matematica Pura ed Applicata Année : 2005

Quasiconvexification of geometric integrals

Résumé

We study the existence of an integral representation for the functional $$ L^p_\mu(\Omega;\mathbb{R}^m)\ni u\mapsto\inf\left\{\liminf_{n\to+\infty}\int_\Omega f(\nabla u_n)d\mu:C^\infty\big(\overline{\Omega};\mathbb{R}^m\big)\ni u_n\stackrel{L^p_\mu}{\to} u\right\} $$ when $\mu$ is a positive Radon measure on $\mathbb{R}^N$, $\Omega\subset\mathbb{R}^N$ is a bounded open set, and $f:\mathbb{M}^{m\times N}\to[0,+\infty[$ is a continuous function not necessarily convex with growth conditions of order $p>1$.

Dates et versions

hal-01644843 , version 1 (22-11-2017)

Identifiants

Citer

Jean-Philippe Mandallena. Quasiconvexification of geometric integrals. Annali di Matematica Pura ed Applicata, 2005, 184 (4), pp.473 - 493. ⟨10.1007/s10231-004-0123-7⟩. ⟨hal-01644843⟩

Collections

UNIMES
43 Consultations
0 Téléchargements

Altmetric

Partager

More