Proximal Decomposition on the Graph of a Maximal Monotone Operator - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Optimization Année : 1995

Proximal Decomposition on the Graph of a Maximal Monotone Operator

Résumé

We present an algorithm to solve: Find $(x, y) \in A\times A^\bot$ such that $y\in Tx$, where $A$ is a subspace and $T$ is a maximal monotone operator. The algorithm is based on the proximal decomposition on the graph of a monotone operator and we show how to recover Spingarn's decomposition method. We give a proof of convergence that does not use the concept of partial inverse and show how to choose a scaling factor to accelerate the convergence in the strongly monotone case. Numerical results performed on quadratic problems confirm the robust behaviour of the algorithm.
Fichier principal
Vignette du fichier
0805023-1.pdf (395.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01644645 , version 1 (03-01-2020)

Identifiants

Citer

Philippe Mahey, Said Oualibouch, Tao Pham Dinh. Proximal Decomposition on the Graph of a Maximal Monotone Operator. SIAM Journal on Optimization, 1995, 5 (2), pp.454-466. ⟨10.1137/0805023⟩. ⟨hal-01644645⟩
224 Consultations
133 Téléchargements

Altmetric

Partager

More