Proximal Decomposition on the Graph of a Maximal Monotone Operator
Résumé
We present an algorithm to solve: Find $(x, y) \in A\times A^\bot$ such that $y\in Tx$, where $A$ is a subspace and $T$ is a maximal monotone operator. The algorithm is based on the proximal decomposition on the graph of a monotone operator and we show how to recover Spingarn's decomposition method. We give a proof of convergence that does not use the concept of partial inverse and show how to choose a scaling factor to accelerate the convergence in the strongly monotone case. Numerical results performed on quadratic problems confirm the robust behaviour of the algorithm.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...