Continuous-Variable Instantaneous Quantum Computing is Hard to Sample - Archive ouverte HAL
Article Dans Une Revue Physical Review Letters Année : 2017

Continuous-Variable Instantaneous Quantum Computing is Hard to Sample

Damian Markham
Elham Kashefi
Eleni Diamanti
Thomas Coudreau
  • Fonction : Auteur
  • PersonId : 1315809
Perola Milman
Peter van Loock
  • Fonction : Auteur

Résumé

Instantaneous quantum computing is a subuniversal quantum complexity class, whose circuits have proven to be hard to simulate classically in the discrete-variable realm. We extend this proof to the continuous-variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of postselected circuits. In order to treat postselection in CVs, we consider finitely resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator Gottesman-Kitaev-Preskill encoding of quantum information, which was previously shown to enable fault-tolerant CV quantum computation. Finally, we show that, in order to render postselected computational classes in CVs meaningful, a logarithmic scaling of the squeezing parameter with the circuit size is necessary, translating into a polynomial scaling of the input energy.
Fichier principal
Vignette du fichier
1607.07605v3.pdf (742.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01644066 , version 1 (16-11-2024)

Identifiants

Citer

Tom Douce, Damian Markham, Elham Kashefi, Eleni Diamanti, Thomas Coudreau, et al.. Continuous-Variable Instantaneous Quantum Computing is Hard to Sample. Physical Review Letters, 2017, 118 (7), ⟨10.1103/PhysRevLett.118.070503⟩. ⟨hal-01644066⟩
157 Consultations
0 Téléchargements

Altmetric

Partager

More