Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks - Archive ouverte HAL
Article Dans Une Revue ISPRS Journal of Photogrammetry and Remote Sensing Année : 2018

Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks

Résumé

In this work, we investigate various methods to deal with semantic labeling of very high resolution multi-modal remote sensing data. Especially, we study how deep fully convolutional networks can be adapted to deal with multi-modal and multi-scale remote sensing data for semantic labeling. Our contributions are threefold: a) we present an efficient multi-scale approach to leverage both a large spatial context and the high resolution data, b) we investigate early and late fusion of Lidar and multispectral data, c) we validate our methods on two public datasets with state-of-the-art results. Our results indicate that late fusion make it possible to recover errors steaming from ambiguous data, while early fusion allows for better joint-feature learning but at the cost of higher sensitivity to missing data.
Fichier principal
Vignette du fichier
elsarticle-template-1-num.pdf (3 Mo) Télécharger le fichier
Vignette du fichier
error_pred.jpg (1.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Figure, Image
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01636145 , version 1 (23-11-2017)

Identifiants

Citer

Nicolas Audebert, Bertrand Le Saux, Sébastien Lefèvre. Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140, pp.20-32. ⟨10.1016/j.isprsjprs.2017.11.011⟩. ⟨hal-01636145⟩
1623 Consultations
1015 Téléchargements

Altmetric

Partager

More