A counterexample to gluing theorems for MCP metric measure spaces - Archive ouverte HAL
Article Dans Une Revue Bulletin of the London Mathematical Society Année : 2018

A counterexample to gluing theorems for MCP metric measure spaces

Luca Rizzi

Résumé

Perelman's doubling theorem asserts that the metric space obtained by gluing along their boundaries two copies of an Alexandrov space with curvature $\geq \kappa$ is an Alexandrov space with the same dimension and satisfying the same curvature lower bound. We show that this result cannot be extended to metric measure spaces satisfying synthetic Ricci curvature bounds in the $\mathrm{MCP}$ sense. The counterexample is given by the Grushin half-plane, which satisfies the $\mathrm{MCP}(0,N)$ if and only if $N\geq 4$, while its double satisfies the $\mathrm{MCP}(0,N)$ if and only if $N\geq 5$.

Dates et versions

hal-01635434 , version 1 (15-11-2017)

Identifiants

Citer

Luca Rizzi. A counterexample to gluing theorems for MCP metric measure spaces. Bulletin of the London Mathematical Society, 2018, 50 (5), pp.781-790. ⟨10.1112/blms.12186⟩. ⟨hal-01635434⟩
211 Consultations
0 Téléchargements

Altmetric

Partager

More