A Two-Stage Subspace Trust Region Approach for Deep Neural Network Training
Résumé
In this paper, we develop a novel second-order method for training feed-forward neural nets. At each iteration, we construct a quadratic approximation to the cost function in a low-dimensional subspace. We minimize this approximation inside a trust region through a two-stage procedure: first inside the embedded positive curvature subspace, followed by a gradient descent step. This approach leads to a fast objective function decay, prevents convergence to saddle points, and alleviates the need for manually tuning parameters. We show the good performance of the proposed algorithm on benchmark datasets.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...