La théorie de Hodge des bimodules de Soergel (d'après Soergel et Elias-Williamson) - Archive ouverte HAL
Article Dans Une Revue Asterisque Année : 2019

La théorie de Hodge des bimodules de Soergel (d'après Soergel et Elias-Williamson)

Simon Riche

Résumé

Soergel bimodules are certain bimodules over polynomial algebras, associated with Coxeter groups, and introduced by Soergel in the 1990's while studying the category O of complex semisimple Lie algebras. Even though their definition is algebraic and rather elementary, some of their crucial properties were known until recently only in the case of crystallographic Coxeter groups, where these bimodules can be interpreted in terms of equivariant cohomology of Schubert varieties. In recent work Elias and Williamson have proved these properties in full generality by showing that these bimodules possess "Hodge type" properties. These results imply positivity of Kazhdan-Lusztig polynomials in full generality, and provide an algebraic proof of the Kazhdan-Lusztig conjecture.
Fichier principal
Vignette du fichier
Exp1139.S.Riche.pdf (590.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01632321 , version 1 (10-11-2017)

Identifiants

Citer

Simon Riche. La théorie de Hodge des bimodules de Soergel (d'après Soergel et Elias-Williamson). Asterisque, 2019, Séminaire Bourbaki 2017/2018, 414, pp.125-166. ⟨hal-01632321⟩
230 Consultations
84 Téléchargements

Altmetric

Partager

More