Non-negative sub-tensor ensemble factorization (NsTEF) algorithm. A new incremental tensor factorization for large data sets. - Archive ouverte HAL Access content directly
Journal Articles Signal Processing Year : 2018

Non-negative sub-tensor ensemble factorization (NsTEF) algorithm. A new incremental tensor factorization for large data sets.

Abstract

In this work we present a novel algorithm for nonnegative tensor factorization (NTF). Standard NTF algorithms are very restricted in the size of tensors that can be decomposed. Our algorithm overcomes this size restriction by interpreting the tensor as a set of sub-tensors and by proceeding the decomposition of sub-tensor by sub-tensor. This approach requires only one sub-tensor at once to be available in memory.
Fichier principal
Vignette du fichier
vigneron2017.pdf (365.67 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01629626 , version 1 (07-09-2022)

Licence

Attribution - NonCommercial

Identifiers

Cite

Vincent Vigneron, Andreas Kodewitz, Michele Nazareth da Costa, Ana Maria Tome, Elmar Langlang. Non-negative sub-tensor ensemble factorization (NsTEF) algorithm. A new incremental tensor factorization for large data sets.. Signal Processing, 2018, 144, pp.77-86. ⟨10.1016/j.sigpro.2017.09.012⟩. ⟨hal-01629626⟩
360 View
36 Download

Altmetric

Share

Gmail Facebook X LinkedIn More