Deforming 3-manifolds of bounded geometry and uniformly positive scalar curvature - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Deforming 3-manifolds of bounded geometry and uniformly positive scalar curvature

Laurent Bessières
  • Fonction : Auteur
  • PersonId : 1022113
Gérard Besson

Résumé

We prove that the moduli space of complete Riemannian metrics of bounded geometry and uniformly positive scalar curvature on an orientable 3-manifold is path-connected. This generalizes the main result of the fourth author [Mar12] in the compact case. The proof uses Ricci flow with surgery as well as arguments involving performing infinite connected sums with control on the geometry.
Fichier principal
Vignette du fichier
space_of_metrics_v3.pdf (351.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01628796 , version 1 (04-11-2017)

Identifiants

Citer

Laurent Bessières, Gérard Besson, Sylvain Maillot, Fernando Coda Marques. Deforming 3-manifolds of bounded geometry and uniformly positive scalar curvature. 2017. ⟨hal-01628796⟩
193 Consultations
132 Téléchargements

Altmetric

Partager

More