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Abstract

We prove that the moduli space of complete Riemannian metrics of bounded geometry

and uniformly positive scalar curvature on an orientable 3-manifold is path-connected. This

generalizes the main result of the fourth author [Mar12] in the compact case. The proof uses

Ricci flow with surgery as well as arguments involving performing infinite connected sums with

control on the geometry.

1 Introduction

1.1 Summary of earlier results

A classical topic in Riemannian geometry is the study of complete manifolds with positive scalar

curvature. A first basic problem is that of existence: in a given dimension, characterize the class

of smooth manifolds which admit such a metric. A second one is, given a manifold M in this class,

to determine whether such a metric is unique up to isotopy—possibly working modulo the action

of the diffeomorphism group of M on the space of metrics under consideration.

When the manifold is non-compact, each of these two problems gives rise to several questions,

according to whether one studies metrics with positive scalar curvature or uniformly positive scalar

curvature, i.e. scalar curvature greater than some positive constant, or restricts attention to metrics

satisfying additional bounds on the geometry.

In this paper we are concerned with dimension 3. We first briefly review known results in other

dimensions. The Gauss-Bonnet formula implies that S2 is the only two-dimensional orientable

compact manifold with positive scalar curvature. Weyl [Wey16] proved that the space of such

metrics on S2 is path-connected, as a consequence of the Uniformization Theorem (later Rosenberg-

Stolz [RS01] proved contractibility). In high dimensions this is no longer true. The space of

metrics of positive scalar curvature on Sn is disconnected for all dimensions n ≥ 7 of the form

n = 8k, n = 8k + 1 or n = 4k − 1 (Hitchin [Hit74], Carr [Car88], Kreck-Stolz [KS88]). We would

also like to mention that similar questions have been studied in dimension 2 in a noncompact

setting, see Belegradek-Hu [BH15, BH16].
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Let M be a closed, orientable, connected, smooth 3-dimensional manifold. The question of

when such a manifold admits a metric of positive scalar curvature has been studied by Gromov-

Lawson [GL80, GL83] and Schoen-Yau [SY79] in the late 1970s and completely settled by Perelman

in his celebrated work on the Geometrisation Conjecture in 2003. Obvious examples of manifolds

in this class are S2 × S1 and spherical manifolds (i.e. manifolds that are diffeomorphic to metric

quotients of the round 3-sphere.) Gromov-Lawson and Schoen-Yau observed independently that

this class is closed under connected sum. Perelman completed the classification:

Theorem 1.1 (Perelman [Per03]). A closed, orientable, connected 3-manifold admits a Rieman-

nian metric of positive scalar curvature if and only if it is a connected sum of spherical manifolds

and S2 × S1’s.

We now state the uniqueness result due to the fourth author. For this we introduce some

notation. Let σ be a positive constant. Let R+(M) (resp. Rσ(M)) denote the set of all metrics

on M which have positive scalar curvature (resp. scalar curvature ≥ σ.)

Theorem 1.2 (Marques [Mar12]). Let M be a closed, orientable, connected 3-manifold such that

R+(M) 6= ∅. Then R+(M)/Diff(M) is path-connected in the C∞ topology.

The main theorem of this article is a generalisation of Theorem 1.2 to possibly non-compact

manifolds. Before we state it, we review some results on the existence question in the setting of

open 3-manifolds.

Let M be an open, orientable, connected 3-manifold. The basic question of when does such a

manifold admit a complete metric g of positive scalar curvature ([Yau82], Problem 27) is still wide

open. Progress has been made under the stronger hypothesis of uniformly positive scalar curvature.

In particular, Cheng, Weinberger and Yu [CWY10] classified complete 3-manifolds with uniformly

positive scalar curvature and finitely generated fundamental group. More closely related to this

paper is a result of the first three authors [BBM11] which we now state.

Recall that a Riemannian manifold is said to have bounded geometry if it has bounded sectional

curvature and positive injectivity radius. We also need to recall the definition of a connected sum

along a locally finite graph. For the moment, we will assume that the summands are closed—later

we will need to consider non-compact summands (cf. Section 2.)

Let X be a collection of closed, oriented 3-manifolds and G be a locally finite connected graph.

Fix a map X : v 7→ Xv which associates to each vertex of G a copy of some manifold in X . To the

pair (G,X) we associate a 3-manifold M in the following way: for each v we let Yv be Xv with dv

punctures, where dv is the degree of v. Let Y be the disjoint union of all Yv’s. Then M is obtained

from Y by the following operation: for each edge e of G, call v, v′ the vertices connected by e;

choose a 2-sphere S ⊂ ∂Yv and a 2-sphere S′ ⊂ ∂Yv′ , and glue Yv and Yv′ together along S and

S′ using an orientation-reversing diffeomorphism. We say that a 3-manifold is a connected sum of

members of X if it is diffeomorphic to a manifold obtained by this construction.

When G is a finite tree, we recover the usual notion of finite connected sum. When G is a finite

graph, we can turn it into a tree at the expense of adding some S2 × S1 factors. In the reverse

direction, one can add edges to the graph and remove S2 × S1 factors. Thus the conclusion of
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Theorem 1.1 can be reformulated as: M is a connected sum of spherical manifolds along a finite

graph.

The generalisation of Theorem 1.1 due to the first three authors reads:

Theorem 1.3 (Bessières-Besson-Maillot [BBM11]). LetM be an orientable, connected 3-manifold.

Then M admits a complete Riemannian metric of uniformly positive scalar curvature and bounded

geometry if and only if there exists a finite collection F of spherical 3-manifolds such that M is a

connected sum of members of F .

An explanation on how to deduce Theorem 1.3 from the main result of [BBM11] is given in

Appendix A.

1.2 Main results of this article

Throughout this paper we make the following convention: all manifolds are assumed to be smooth,

orientable and without boundary. We will not assume that they are connected in general.

Let M be a 3-manifold. Given σ > 0, we denote by Rbg
σ (M) the space of complete Riemannian

metrics g on M with scalar curvature ≥ σ and bounded geometry. We further set Rbg
+ (M) =⋃

σ>0 Rbg
σ (M). We endow Rbg

+ (M) with the C∞
loc-topology. When M is compact, every metric has

bounded geometry, and we have R+(M) = Rbg
+ (M) and Rσ(M) = Rbg

σ (M) for each σ.

The following is the main theorem of this article:

Theorem 1.4. Let M be a connected 3-manifold such that Rbg
1 (M) 6= ∅. Then Rbg

1 (M)/Diff(M)

is path-connected.

Since any metric in Rbg
+ (M) differs from a metric in Rbg

1 (M) by scaling, we obtain the following

corollary:

Corollary 1.5. Let M be a connected 3-manifold such that Rbg
+ (M) 6= ∅. Then Rbg

+ (M)/Diff(M)

is path-connected.

1.3 Strategy of proof

Here we explain the main difficulty in extending Theorem 1.2 to Theorem 1.4. First we sketch the

argument used in [Mar12] for proving Theorem 1.2.

Let M be a closed, connected 3-manifold such that R1(M) is nonempty. By Theorem 1.1, M

is a connected sum of spherical manifolds and S2 × S1’s. A crucial notion is that of a canonical

metric on M . To construct it, start with the unit sphere S3 ⊂ R4. For each spherical summand

Σi, fix a round metric on Σi, a pair of points (p+i , p
−
i ) ∈ S3 × Σi and perform a GL-sum at the

points {p±i }. This notion will be explained in detail (as well as greater generality) in Section 2

below. Here we describe it informally: one removes a small metric ball B±
i around each p±i and

glues a thin tube between ∂B+
i and ∂B−

i , preserving the condition of positive scalar curvature.

Finally, for each S2 × S1 summand, do a ‘self GL-sum’ of S3, i.e. a similar operation with both

points p±i in S3.
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Making this construction more precise and invoking Milnor’s uniqueness theorem for the prime

decomposition, one sees that the space of canonical metrics onM is path-connected modulo diffeo-

morphism. Thus, for the purpose of proving Theorem 1.2, one can speak of ‘the’ canonical metric

on M .

The bulk of the proof consists in showing that any metric in R+(M) can be isotoped to the

canonical metric. This uses a refined version of Perelman’s Ricci flow with surgery (based on the

monograph by Morgan and Tian [MT07]) as well as conformal deformations.

In the non-compact case, we can use Theorem 1.3 to recognize the topology of the manifold M .

However, there is no uniqueness theorem for a presentation of M as a connected sum of spherical

manifolds. Thus as soon as the topology of M becomes intricate, it is unclear how to define a

canonical metric.

We shall define a special subset of Rbg
1 (M), consisting of what we call GL-metrics (see below.)

The proof has two parts. In the first part, we show that any two GL-metrics can be connected to

each other (modulo diffeomorphism.) In the second part, we show that any metric in Rbg
1 (M) can

be deformed into a GL-metric. We use arguments similar to those of [Mar12], based on the version

of Ricci flow with surgery developed in [BBM11].

1.4 Main technical results

To make the above discussion more precise, we need to define GL-metrics. In order to do this, we

need a topological notion, that of a spherical splitting of a 3-manifold, and the geometric notion

of straightness with respect to a Riemannian metric.

Definition 1.6. Let M be a 3-manifold. A spherical system in M is a (possibly empty) locally

finite collection S of pairwise disjoint embedded 2-spheres in M . The members of S are called its

components. We denote by M \ S the complement in M of the union of all components of S.
A spherical system S in M is called a spherical splitting if each connected component of M \ S

is relatively compact in M .

In particular, the empty set is a spherical splitting if and only if M is compact.

Let g be a Riemannian metric on M . An embedded 2-sphere S ⊂ M is called straight with

respect to g (or just straight if the metric is understood), if S has an open tubular neighbourhood

U , called a straight tube, such that there is an isometry f : U0 → U , where U0 is a Riemannian

product of a round 2-sphere with an interval, and the preimage of S has the form S2 × {∗}. A

spherical system is called straight with respect to g if all of its components are.

Definition 1.7. Let M be a 3-manifold. A Riemannian metric g ∈ Rbg
+ (M) is called a GL-metric

if M admits a spherical splitting which is straight with respect to g.

We say that two metrics g, g′ ∈ Rbg
1 (M) are isotopic if there exists a continuous path gt ∈

Rbg
1 (M), for t ∈ [0, 1], such that g0 = g and g1 = g′. We say that g, g′ are isotopic modulo

diffeomorphism if g is isotopic to a metric that is isometric to g′. One of the main technical results

of this paper is the following:
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Theorem A. Let M be a 3-manifold and g, g′ ∈ Rbg
1 (M) be two GL-metrics. Then g is isotopic

to g′ modulo diffeomorphism.

In order to state our second main technical result, we introduce more notation and terminology.

For C > 0 we say that a metric on M has geometry bounded by C if the norm of the curvature

tensor is ≤ C and the injectivity radius is ≥ C−1/2. Given σ,C > 0 we denote by RC
σ (M) the set

of complete Riemannian metrics on M which have scalar curvature ≥ σ and geometry bounded by

C. Two metrics g, g′ ∈ RC
σ (M) are said to be isotopic in RC

1 (M) if there exists a continuous path

gt ∈ RC
1 (M), t ∈ [0, 1], such that g0 = g and g1 = g′.

Theorem B. For every A > 0 there exists B = B(A) > 0 such that for every 3-manifold M and

every metric g ∈ RA
1 (M), there exists a GL-metric g′ ∈ RB

1 (M) which is isotopic to g in RB
1 (M).

It is immediate that Theorems A and B together imply Theorem 1.4.

Remark 1.8. Theorem B is stronger than what is needed to prove Theorem 1.4 since we have

a uniform bound on the geometry. If Theorem A could be similarly improved, i.e. if one could

show that for each A > 0 there is B > 0 such that for any 3-manifold M , any two GL-metrics in

RA
1 (M) are isotopic in RB

1 (M), then one would get the stronger conclusion that for every A > 0

there is a B > 0 such that the map RA
1 (M)/Diff(M) → RB

1 (M)/Diff(M) induced by inclusion is

0-connected.

Let us denote by Diff+(M) the group of orientation-preserving diffeomorphisms of M . One of

the main ingredients for proving Theorem A is a version of the main result of [Mar12] which is

slightly different from Theorem 1.2. We state it below for future reference.

Theorem 1.9. LetM be a closed, oriented 3-manifold such that R1(M) 6= ∅. Then R1(M)/Diff+(M)

is path-connected in the C∞ topology.

An explanation of how to deduce this from the arguments in [Mar12] is given in Appendix B.

The proof of Theorem A relies on cut-and-paste arguments, which in our context means surgeries

and GL-sums. Let us sketch this proof. Fix an orientation of M and consider two GL-metrics

g, g′ on M . Suppose first that g, g′ have a common straight splitting S = {Sα}, and that g

coincides with g′ on a neighbourhood of S. Perform metric surgeries along S, cutting and gluing

back standard caps. The resulting manifold M# carries two metrics g# and g′# of positive scalar

curvature coming from g and g′ respectively. All the connected components of M# are closed.

Theorem 1.9 applied to each component of M# gives an isotopy modulo positive diffeomorphisms

between g# and g′#. Although we do not a priori have a uniform upper bound on the geometry

along this path of metrics, a reparametrisation trick (cf. Subsection 4.1) allows to perform GL-sums

so as to obtain a path in Rbg
1 (M), connecting g to g′ modulo diffeomorphism. In the general case

of two arbitrary GL-metrics g, g′, the idea is to deform one of them so as to obtain two metrics

which coincide near a straight splitting, as above. The proof is also by reduction to the compact

case.

The proof of Theorem B uses surgical solutions, a version of Ricci flow with surgery developed

in [BBM11]. Starting from a Riemannian manifold (M0, g0) with bounded geometry, it produces

5



a sequence (Mk, gk(t))t∈[tk,tk+1] of Ricci flows with uniformly bounded geometry, the jump from

one interval to the next being realised by performing metric surgeries and discarding components

with ‘nice’ metrics. When the scalar curvature of the initial metric satifies Rg0 ≥ 1, the solution

becomes extinct in finite time (Mk = ∅ for some k), and the last metric before extinction is nice

enough so that it is straightforward to isotope it to some GL-metric. The construction of the

isotopy to g0 then uses a backward induction argument similar to the one of [Mar12], performing

GL-sums of paths to GL-metrics. A technical issue here is to realise this while keeping uniform

bounds on the geometry. This requires arguments which are more involved than the ones needed

for Theorem A, and are carried out in Section 6.

The paper is organised as follows. In Section 2, we define the notion of GL-sum of Riemannian

manifold and prove some useful results about it. Section 3 is devoted to metric surgery. Theorem A

is proven in Section 4. In Section 5 we discuss surgical solutions of Ricci flow. Finally, Sections 6

and 7 contain the proof of Theorem B.

Acknowledgments This research was partially supported by the Agence Nationale de la Re-

cherche through project GTO ANR-12-BS01-0014. The second author is supported by the ERC

Advanced Grant 320939, GETOM (GEometry and Topology of Open Manifolds). The fourth

author was partially supported by the National Science Foundation grant NSF-DMS-1509027.

2 GL-sums

In this section we give some details on the Gromov-Lawson connected sum construction from [GL80],

(see also [Mar12]) which we adapt to our context of non-compact manifolds.

2.1 Topological aspects

Let M be a (possibly disconnected) oriented 3-manifold. Let {(p−α , p+α )}α be a finite or countable

family of pairs of points of M . Assume that all these points are distinct and denote by P the set

of all these points. Further assume that every point of P is isolated. Choose a family of pairwise

disjoint neighbourhoods U±
α around these points, each of which is diffeomorphic to the closed 3-

ball. Denote by M#({p±α }, {U±
α }) the manifold obtained by removing the interior of the U±

α ’s and

for each α, gluing together ∂U−
α and ∂U+

α along an orientation-reversing diffeomorphism. Since the

space of orientation-reversing diffeomorphisms of S2 is path-connected, the diffeomorphism type

of this manifold does not depend on the choice of gluing diffeomorphisms. We refrain from calling

M#({p±α }, {U±
α }) a ‘connected sum’, since it needs not be connected.

Remark 2.1. This construction is more general than the notion of connected sum along a graph

from [BBM11] described in the introduction of this paper in two respects: the pieces need not be

compact, and the resulting manifold need not be connected. The motivation for this greater gen-

erality comes from surgical solutions: this operation is the one needed to reconstruct the manifold

before surgery from the manifold after surgery in the backward inductive arguments in Section 7.
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The manifold M#({p±α}, {U±
α }) may a priori depend on the choice of the points {p±α} and the

open sets {U±
α }. First we show that, up to diffeomorphism, it does not depend on {U±

α }:

Lemma 2.2. Let M be an oriented 3-manifold and {p±α } be as above. Let {U±
α } (resp. {V ±

α }) be

a family of pairwise disjoint neighbourhoods of the points p±α , each of which is diffeomorphic to a

closed 3-ball. Then M#({p±α }, {U±
α }) is diffeomorphic to M#({p±α }, {V ±

α }).

Proof. Without loss of generality we may assume that V ±
α ⊂ U±

α for every α. By Alexander’s

theorem, U±
α \

◦

V ±
α is diffeomorphic to S2× [0, 1]. HenceM \∪U±

α is diffeomorphic toM \∪V ±
α .

As a result, we will sometimes abuse notation by writing M#({p±α}) for M#({p±α}, {U±
α }).

By contrast, the diffeomorphism type of M#({p±α}) may in fact depend on the choice of base

points. We illustrate this on the following example.

Example. LetM be the disjoint union ofM0 = S2×R and an infinite sequence {Xi}i≥1 of copies

of RP 3. Choose a point p−i in each Xi and a sequence of distinct points p+i in M0 exiting every

compact set. Let us denote by L (resp. R) the half-cylinder S2 × (−∞, 0] (resp. S2 × (0,+∞).)

We distinguish three cases:

• If all but finitely many of the p+i ’s are in L, we obtain a manifold M1
#.

• If all but finitely many of the p+i ’s are in R, we obtain a manifold M2
#.

• Otherwise we call the result M3
#.

Then M1
# is not diffeomorphic to M3

#, since S
2 × [0,+∞) properly embeds into M1

# but not into

M3
#. The manifolds M1

# and M2
# are diffeomorphic, although Proposition 2.3 below does not

apply.

We now show that the construction does not depend on the choice of basepoints under some

additional hypothesis:

Proposition 2.3. Let M be an oriented 3-manifold and {p±α} and {q±α } be two families of pairs

of points as above. Suppose that there is a locally finite family of pairs of continuous curves {γ±α },
parametrised by [0, 1] and such that for each α, we have γ+α (0) = p+α , γ

+
α (1) = q+α , γ

−
α (0) = p−α ,

and γ−α (1) = q−α .Then M#({p±α}) is diffeomorphic to M#({q±α }).

Proof. Without loss of generality we may assume that the curves γ±α are either constant maps

or embeddings. Furthermore we may assume that they are pairwise disjoint except maybe at

the endpoints. By symmetry it is sufficient to prove that M#({p±α }) and M#({γ±α (1/2)}) are

diffeomorphic.

Let {W±
α } be a family of closed pairwise disjoint neighbourhoods of γ±α ([0, 1/2]) diffeomorphic to

a closed 3-ball. It is clear then that M#({p±α}, {W±
α }) is diffeomorphic to M#({γ±α (1/2)}, {W±

α }).
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2.2 GL-parameters and GL-sums

We present below the construction of connected sums with a precise control on the scalar curvature.

We restrict the discussion to 3-manifolds, although part of the construction works in any dimension

n ≥ 3.

Definition 2.4. Let (M, g) be a Riemannian 3-manifold, p be a point of M and {ek} be an or-

thonormal basis of TpM . A triple (ρ0, σ, η) of positive real numbers is called a set of GL parameters

at p (with respect to g) if the following requirements are met:

1. ρ0 ≤ min{ 1
2 injM (p), 1};

2. The scalar curvature of g is greater than σ on the ball Bρ0(p);

3. The C2-norm of g in exponential coordinates in the basis {ek} is bounded from above by

η−1.

The motivation comes from the following result, which is essentially due to Gromov and Lawson,

although the precise control of the geometry is not made explicit in their paper.

Proposition 2.5. For all ρ0, σ, η > 0 there exists ρ2 = ρ2(ρ0, σ, η) ∈ (0, ρ0) such that the following

holds. Let (M, g) be a Riemannian 3-manifold of positive scalar curvature, p be a point of M and

{ek} be an orthonormal basis of TpM . If (ρ0, σ, η) is a set of GL-parameters at p, then there is a

metric g′ on Bρ0(p) \ {p} with the following properties:

1. The metric g′ coincides with g near ∂Bρ0(p),

2. (Bρ2(p) \ {p}, g′) is isometric to a half-cylinder,

3. The scalar curvature of g′ is greater than 9
10σ.

Moreover, if |DkRmg| ≤ Ck on Bρ0(p) for k ∈ {0, 1, . . . , k̄}, then |DkRmg′ | ≤ C′
k on Bρ0(p) \ {p},

where C′
k depends on C0, . . . , Ck and ρ2, ρ0, σ, η.

Proof. The main step is the construction of a submanifoldM ′ of the Riemannian product Bρ0(p)×
R. This manifold is obtained by revolution along the R axis of a carefully chosen planar curve

γ ⊂ R2. We identify Bρ0(p) with Bρ0(0) ⊂ R3 using exponential normal coordinates in the basis

{ek}. This being fixed, [GL80] proves the existence of a curve γ ⊂ R2 with the following properties:

(1) the image of γ is contained in the region {(ρ, t) : ρ ≥ 0, t ≥ 0};

(2) the image of γ contains the horizontal half-line ρ ≥ ρ1, t = 0 for some 0 < ρ1 < ρ0;

(3) the image of γ contains the vertical half-line {ρ = ρ2, t ≥ t2} for some 0 < ρ2 < ρ1 and t2 > 0.

(4) the induced metric on M ′ = {(x, t) : (|x|, t) ∈ γ} as a submanifold of the Riemannian product

Bρ0(p)×R has positive scalar curvature.
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The curve γ satisfying (1)-(4) is not unique. Inspecting the construction in [GL80] pages 425-429,

we see that the choice of γ can be refined so that M ′ has scalar curvature greater than 9
10σ.

By choosing the radius ρ2 small enough depending on η, the induced metric on M ′ ∩ {t ≥ t2}
can be made arbitrarily close to the cylindrical metric on S2

ρ2
(0)× [0,+∞), where S2

ρ2
(0) ⊂ R3 is

the standard sphere of radius ρ2. Using a cutoff function, the induced metric can be deformed on

M ′ ∩ {t2 ≤ t ≤ t3}, for some t3 > t2, into a metric gM ′ which agrees with the original metric for

t ≤ t2 and is isometric to S2
ρ2
(0) × [t3,∞) when t ≥ t3. Identifying Bρ0(p) \ {p} ≈ Bρ0(0) \ {0}

and M ′, in such a way that Sρ2(p) = ∂Bρ2(p) corresponds to M ′ ∩ {t = t3 + 1}, we obtain the

required metric g′ on Bρ0(p) \ {p} by pulling back gM ′ . Once γ(ρ0, σ, η) and the cutoff function

are chosen, the estimates on the derivatives of the curvature of g′ follow from the definition of M ′

as a submanifold of the product Bρ0(p)×R.

Throughout the paper, we fix for each triple (ρ0, σ, η) a curve γ = γ(ρ0, σ, η) satisfying properties

(1)–(4) in the proof of Proposition 2.5, in such a way that for given positive numbers ρ̄, σ̄, η̄,

whenever ρ0 ≥ ρ̄, σ ≥ σ̄ and η ≥ η̄, then g′ is controlled in terms of the geometry of g and ρ̄, σ̄, η̄.

We now define the notion of GL-sum. Let C, σ be two positive constants and (M, g) be an

oriented Riemannian 3-manifold with geometry bounded by C and scalar curvature greater than

σ. Let {(p−α , p+α )}α be a finite or countable family of pairs of points of M . For each α and each

ǫ ∈ {±1} fix a positive orthonormal basis {eǫα,k} at Tpǫ
α
M . Let {(ρα, σα, ηα)}α be a family of triples

of positive real numbers such that for each α, the triple (ρα, σα, ηα) is a set of GL-parameters

at both p+α and p−α . Further assume that the balls Bρα(p
±
α ) are all pairwise disjoint, and that

inf ρα = ρ > 0 and inf ηα = η > 0 (one has also inf σα ≥ σ). For each α, let ρ2,α = ρ2,α(ρα, σα, ηα)

be given by Proposition 2.5 and denote by U±
α the closure of B(p±α , ρ2,α).

Then the GL-sum associated to the above data is the Riemannian 3-manifold (M#, g#), where

M# =M#({p±α }, {U±
α }) is the manifold defined in subsection 2.1, and g# is as follows: for each α,

we glue together (Bρ0(p
+
α )\Bρ2(p

+
α ), g

′) and (Bρ0(p
−
α )\Bρ2(p

−
α ), g

′) (with the metric g′ given in each

case by Proposition 2.5) by identifying their boundaries, which are isometric to Sρ2(0) ⊂ Rn, by

the orientation reversing isometry obtained by composing exponential maps and the identification

of the tangent spaces given by the linear map sending {e+α,1, e+α,2, , e+α,3} to {−e−α,1, e−α,2, , e−α,3}.
Sometimes we will use the notation (M, g)#, for (M#, g#). When we need to be more precise,

we will specify the basepoints and use the notation (M#({p±α }), g#({p±α}) or (M, g)#({p±α}), or
even indicate all parameters: (M, g)#({(ρα, σα, ηα)}, {p±α}, {e±k,α}). In the special case of a classical

connected sum M1#M2 we use the notation g1#g2.

Remark 2.6. By construction, each sphere along which some gluing has been done is straight

with respect to g#. As a consequence, if (M#, g#) is a GL-sum of closed manifolds, then g# is a

GL-metric (cf. Definition 1.7.)

Observe that the metric g# has scalar curvature ≥ 9
10σ, and geometry bounded by a constant

C′ depending only on C, ρ, σ, η. However, the bounded geometry of (M, g) alone does not suffice

to control η. In order to do this, we need bounds on the derivative of the curvature.

From Hamilton [Ham95, Corollaries 4.11 and 4.12] we have the following:
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Lemma 2.7. For each n ≥ 2 there is a universal constant c(n) ∈ (0, 1/2) with the following

property. Let C0, C1, C2 be positive numbers and let (M, g) be an n-dimensional Riemannian

manifold such that |DkRm| ≤ Ck for k = 0, 1, 2. Then the C2-norm of g in exponential coordinates

is bounded from above in B
c(n)C

−1/2
0

(p) by a constant depending only on C0, C1, C2.

Therefore when |DkRm| ≤ Ck, k = 0, 1, 2, and ρα < c(3)C
−1/2
0 , we have a positive lower bound

for η. In the context of a Ricci flow with bounded curvature, the extra bounds on the derivatives

of the curvature are provided by the so-called Shi estimates [Shi89]. We note that the GL-sum

construction preserves bounds on the derivatives of the curvature, as remarked in Proposition 2.5.

Therefore starting from a metric with bounds on the derivatives of the curvature, Lemma 2.7 and

Proposition 2.5 imply that one can iterate the GL construction keeping the geometry under control.

2.3 Continuity of the GL-sum construction

We give below a generalisation of Proposition 6.1. of [Mar12] that we will need.

Let (M, g) be a Riemannian 3-manifold and k̄ be a natural number. Given a finite family Ak,

k ∈ {0, 1, . . . , k̄} of positive real numbers, we denote Ak̄ = (Ak)k∈{0,1,...,k̄} and we say that g has

geometry bounded by Ak̄ if inj(g) ≥ A
−1/2
0 and |DkRm(g)| ≤ Ak for k ∈ {0, 1, . . . , k̄}. In general

we will take k̄ = [ǫ−1] and denote by Ā = A[ǫ−1], omitting the index. Given n ≤ k̄ and Ak̄, then

An := (Ak)k∈{0,1,...,n}. With these notations, when g has geometry bounded by A2, Lemma 2.7

gives a lower bound η(A2) > 0 for the parameter η in balls of radius less than c(3)A0
−1/2.

Proposition 2.8. Let k̄ be a natural number. For every Ak̄ = (Ak)k∈{0,1,...,k̄}, ρ ∈ (0,min{c(3)A0
−1/2, 1}),

σ > 0, and η > 0, there exist A#

k̄
= A#

k̄
(Ap, ρ, σ, η) = (A#

k )k∈{0,1,...,k̄} with the following property.

Let M be an oriented 3-manifold and gt be a continuous path of metrics with scalar curvature

≥ σ and geometry bounded by Ak̄. Let p±α,t be continuous paths of points of M , and {e±k,α(t)} be

continuous paths of positive orthonormal bases of (Tp±
α,t
M, gt). Let (ρα, σα, ηα) be a triple which

is for each t a set of GL-parameters at p±α,t w.r.t. gt. Suppose that ρα ≥ ρ,, σα ≥ σ, ηα ≥ η

and that there exist pairwise disjoint closed 3-balls {W±
α } such that Bgt(p

±
α,t, 2ρα) ⊂ W±

α for all

t. Let (M#,t, g#,t) denote the GL-sum (M, gt)#({(ρα, σα, ηα)}, {p±α,t}, {e±k,α(t)}). Then there exist

positive diffeomorphisms φt :M#,0 → M#,t such that

1) φt is the identity on M \ ∪W±
α ⊂M#,0 ∩M#,t.

2) The pulled-back metrics φ∗t (g#,t) define a continuous path on M#,0, with scalar curvature

≥ 9
10σ and geometry bounded by A#

k̄
.

3) We have φ∗t (g#,t) = gt on M \ ∪W±
α ⊂M#,0.

Proof. It is enough to argue in a pair W
±

α . By standard arguments there is an isotopy ht from

W±
α into itself which is the identity on ∂W±

α , and such that

• ht maps p±α,0 to p±α,t,

• (ht)∗ sends {e±k,α(0)} to {e±k,α(t)},
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• ht coincides with expt ◦(ht)∗ ◦ exp−1
0 from Bg0(p

±
α,0, ρα) to Bgt(p

±
α,t, ρα).

The isotopy is compatible with the identifications of the GL-sum construction and yields the

required family of diffeomorphisms.

Remark 2.9. It follows that t 7→ g#,t is a continuous path in RA#

k̄

9σ/10(M#,0)/Diff(M#,0). Another

consequence is that up to isotopy and diffeomorphism, a GL-sum (M, g)#({(ρα, σα, ηα)}, {p±α}, {e±k,α})
does not depend on the positive orthonormal basis {e±k,α}. Therefore in the sequel we will frequently

drop the mention to the basis, which implicitely will always be positive and orthonormal. We ob-

serve that taking a negative basis may change the diffeomorphism type of the resulting manifold.

2.4 Two lemmas

For later reference we collect two technical results from [Mar12].

Lemma 2.10 (cf. [Mar12, p. 835]). Let B− and B+ be balls of constant sectional curvature in

(0, A], and let p± ∈ B±. Let γ1 = γ(ρ1, σ1, η1) and γ2 = γ(ρ2, σ2, η2) be two planar curves, where

(ρi, σi, ηi) are GL-parameters suitable for both balls, i = 1, 2. Then the GL-sums B−#γ1B
+ and

B−#γ2B
+ performed at p± are isotopic, without changing the metric near ∂B±, through metrics

of scalar curvature ≥ σ̄ = min{ 9
10σ1,

9
10σ2} > 0 and geometry bounded by Ā = Ā(A, γ1, γ2) <∞.

The following lemma shows that, applying [Mar12, Prop. 3.3], we can continuously deform a

standard cylinder in such a way that in its middle it becomes isometric to a subset of a round

sphere.

Lemma 2.11 (cf. [Mar12, Prop. 3.3]). Let (S3, h) be a standard 3-sphere of scalar curvature σ and

let x ∈ S3. Denote by h′ the metric obtained on S3 \ {−x, x} by applying the GL-sum construction

with parameter (ρ, σ, η) at both x and −x, and let σ̄′ be the (constant) scalar curvature of h′ near

±x. Let (S2 × (a, b), g) be a standard cylinder of scalar curvature σ̄′, and let (a′, b′) ⊂ [a, b]. Then

there exists an isotopy (gt) on the cylinder such that

1. gt = g on S2 × (a, a′) and S2 × (b′, b).

2. g0 = g and (S2 × (a′, b′), g1) is isometric to a subset of (S3 \ {−x, x}, h′).

3. Each metric gt has scalar curvature greater than ¯̄σ = ¯̄σ(ρ, σ, η) > 0 and geometry bounded by
¯̄A = ¯̄A(ρ, σ, η) <∞.

3 Metric surgery

In this section, we recall some notions and results from [BBM11]. Throughout the paper we denote

by dθ2 the round metric of scalar curvature 1 on S2, and whenever I ⊂ R is an open interval, we

denote by gcyl the product metric dθ2 + ds2 on S2 × I. We also use this notation on R3 \ {0},
working in polar coordinates. The origin 0 of R3 is called the tip and the radial coordinate is

denoted by r.
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A standard initial metric is a complete metric on R3 which is rotationally symmetric, has

bounded nonnegative sectional curvature, is isometric to gcyl on some neighbourhood of infinity

and is round on some neighbourhood of the tip. As in [BBM11, section 3.2] (cf. also [BBB+10,

section 7.1]), we fix a particular standard initial metric gu which is cylindrical outside B(0, 3)

and round of sectional curvature 1/2 near the tip. We also fix a smooth, nonincreasing function

f : [0,+∞) → [0,+∞) with support in [0, 5], and set gstd = e−2f(r)gu. The function f is chosen so

that metric surgery is distance-nonincreasing and preserves the so-called Hamilton-Ivey pinching

property, none of which is important in the present paper. The metric gstd is also a standard initial

metric. It has scalar curvature ≥ 1 everywhere and positive sectional curvature on B(0, 5).

Let g be a Riemannian metric on S2 × (−4, 4) which is ε-close to the metric gcyl in the C [ε−1]-

topology. We now describe a surgery operation which turns (S2 × (−4, 4), g) into a Riemannian

manifold (S−⊔S+, gsurg), where S−⊔S+ is a disjoint union of copies of the open ball B(0, 9) ⊂ R3

and the metric gsurg is defined as follows. Let ψ− : S2 × (−4, 4) → B(0, 9) be the embedding given

by (θ, s) 7→ ((5− s), θ) in polar coordinates. Fix a function χ : B̄(0, 9) → [0, 1] such that χ ≡ 0 on

B(0, 3) and χ ≡ 1 outside B(0, 4).

Let g−surg be the Riemannian metric on S− defined as follows:

g−surg =





gstd on B(0, 3)

χe−2f (ψ−)∗g + (1− χ)gstd when 3 ≤ r ≤ 4

e−2f (ψ−)∗g when 4 ≤ r ≤ 5

(ψ−)∗g when 5 ≤ r ≤ 9.

In the case that g = gcyl, one can check that g−surg = gstd. More generally, g−surg is δ′(ε)-close to

gstd for some δ′(ε) going to zero with ε. Notice that the metric on S2× (−4, 0) remains unchanged

(up to a diffeomorphism). This construction thus amounts to capping off an ‘almost standard

cylinder’.

Likewise, we define a metric g+surg on S+ using the embedding ψ+ : S2×(−4, 4) → B(0, 9) given

in polar coordinates by (θ, s) 7→ ((5 + s), θ). Finally we let gsurg be the metric on S− ⊔ S+ whose

restriction to S− (resp. to S+) is g−surg (resp. g+surg.)

From [BBM11, section 3.3], we get the following result. Let ε0 > 0 be the number defined in

Lemma 3.6 of [BBM11].

Theorem 3.1. There exists δ0 ∈ (0, ε010 ) and a function δ′ : (0, δ0] → (0, ε0/10) going to zero

at zero with the following property. Let δ ∈ (0, δ0) and let g be a metric on S2 × (−4, 4) which

is δ-close to gcyl. Then the Riemannian manifold (S−, g−surg) (resp. (S+, g+surg)) has the following

properties:

1. All sectional curvature are positive on B(0, 4).

2. The scalar curvature is ≥ Rg on r−1((4, 9)).

3. The smallest eigenvalue of the curvature operator of g±surg is larger than or equal to the

smallest eigenvalue of Rmg on r−1((4, 9)).

4. The metric g±surg is δ′(δ)-close to gstd.
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Our next goal is to define metric surgery on a neck in a Riemannian manifold. For technical

reasons, it is useful to allow the length of the neck to vary.

Definition 3.2. Let ε, L be positive real numbers and (M, g) be a Riemannian 3-manifold. An

(ε, L)-neck in M is an open subset N ⊂ M for which there is a C [ε−1]+2-diffeomorphism φ :

S2 × (−L,L) → N , called a parametrisation, and a number λ > 0 such that λφ∗g is ε-close to gcyl

in the C [ε−1]+2-topology (defined by gcyl.) The set φ(S2 × {0}) is called the middle sphere of N .

When L = ε−1 we simply say that N is an ε-neck.

We recall that ε-closeness in the C [ε−1]+2-topology between the metrics yields a control on the

derivatives of the curvature up to order [ε−1]. In the sequel, ε-closeness will always be understood

in this topology.

Let (M, g) be a Riemannian 3-manifold, and N ⊂ M be an (ε, 4)-neck. Let φ, λ be as above

and S be the middle sphere of the neck. We call metric surgery on N (or along S) the procedure

of replacing (M, g) by the Riemannian manifold (M+, g+), where

M+ =
(
(M \ S) ⊔ S− ⊔ S+

)
/ ∼

identifying φ(S2 × (−4, 0]) with S− \B(0, 5) via ψ− ◦ φ−1 and φ(S2 × [0, 4)) with S+ \B(0, 5) via

ψ+ ◦ φ−1, and {
g+ = g on M \ S
g+ = λ−1(λφ∗g)surg on S− ⊔ S+.

Remark 3.3. If g is C∞-smooth, then the manifold (M+, g+) is C [ε−1]+2-smooth. Furthermore

if g satisfies |DkRm| ≤ Ak for k ≤ [ε−1], then g+ satisfies |DkRm| ≤ Bk for k ≤ [ε−1], where

B = {Bk} depends on A = {Ak} only.

Remark 3.4. The value 4 above can be replaced by any positive value L (replacing S± with

B(0, 5 + L) if L < 4). In particular this works for L = ε−1, so that we have defined the notion of

surgery on an ε-neck .

In some sense, the metric surgery process can be reversed by the GL-sum construction, as shown

by the following result. Choose orientations on the manifolds S2 × (−4, 4), S− and S+ in such a

way that the diffeomorphisms ψ− and ψ+ are positive. Let S−#S+ be the connected sum with

basepoints the tips. We choose once and for all an identification between S2× (−4, 4) and S−#S+

which coincides with ψ− and ψ+ near the boundary (as in the proof of [Mar12, Lemma 6.2].) This

does not depend on the choice of orientations. Let ε3 be the constant given by [Mar12, Lemma 6.3].

From this lemma we get:

Lemma 3.5. Let ε ∈ (0, ε3). Let g be a Riemannian metric on S2 × (−4, 4) which is ε-close to

gcyl on S2 × (−4, 4). Then (S−#S+, g−surg#g
+
surg) can be continuously deformed back into (S2 ×

(−4, 4), g) through metrics which all coincide with g near the ends of S2 × (−4, 4), have scalar

curvature greater than 9/10 and geometry bounded by some B[ε−1].

If N is an (ε, 4)-neck we use its parametrisation to identify it with S−#S+. Finally if (M+, g+)

is obtained from (M, g) by surgery in a family of disjoints necks, then we can identify (M+)#
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with M canonically. This identification is the identity in the complement of the necks. The above

lemma shows that (g+)# is isotopic to g.

4 Connecting two GL-metrics: proof of Theorem A

The aim of this section is to prove Theorem A. This theorem follows immediately from Lemma 4.1

and Proposition 4.2 below, which are proven in Subsections 4.1 and 4.2 respectively.

Given a spherical splitting S = {Sα} of a 3-manifold M and two metrics g, h on M , we will say

that g = h near S if for every α there is a neighbourhood of Sα on which g and h coincide.

Lemma 4.1. Let M be a non-compact 3-manifold. Let (g, h,S) be a triple such that g and h are

GL-metrics on M that belong to Rbg
1 (M), and S is a spherical splitting which is straight for both

g and h. Suppose that g = h near S. Then g is isotopic to h modulo diffeomorphism.

Proposition 4.2. Let M be a non-compact 3-manifold, let g, g′ ∈ Rbg
1 (M) be two GL-metrics

on M and let S ′ be a spherical splitting straight for g′. Then there exists a metric h ∈ Rbg
1 (M),

isotopic to g modulo diffeomorphism, such that h = g′ near S ′. (In particular, S ′ is straight for

h.)

4.1 Proof of Lemma 4.1

We start with a lemma which allows to combine paths of metrics defined on compact submanifolds

in an exhaustion. In the sequel, the support of a path of metrics gt on a manifold M is the closure

of the subset of M where t 7→ gt fails to be constant.

Lemma 4.3. Let M be a 3-manifold and C be a positive constant. Let ∅ = K−1 ⊂ K0 ⊂ K1 ⊂
K2 ⊂ · · ·Kℓ · · · be an exhaustion of M by compact submanifolds. Suppose we are given a sequence

of continuous paths h(ℓ) : [ ℓ
ℓ+1 ,

ℓ+1
ℓ+2 ] → Rbg

1 (M) such that

(i) For each ℓ we have h(ℓ)( ℓ+1
ℓ+2 ) = h(ℓ+1)( ℓ+1

ℓ+2 );

(ii) For each ℓ, the path h(ℓ) has support in Kℓ \Kℓ−1;

(iii) For each ℓ, the metric h(ℓ)( ℓ+1
ℓ+2 ) has geometry bounded by C.

Then there is a unique continuous path h : [0, 1] → Rbg
1 (M) which extends the h(ℓ)’s. Furthermore,

h(1) has geometry bounded by C.

Proof. By (i) there is a unique extension h of the paths h(ℓ) to the interval [0, 1). By (ii), h(t)

has a limit in the C∞
loc topology when t goes to 1. We set h(1) equal to this limit, thus obtaining

a continuous map defined on [0, 1]. Condition (iii) ensures that h(1) has geometry bounded by

C.

Remark 4.4. A typical application of Lemma 4.3 is as follows: M is a disjoint union of closed

manifoldsMℓ for ℓ ∈ N; we have a metric g ∈ Rbg
1 , which we wish to deform to another metric with

nice properties, and we are given a collection of paths g(ℓ) : [0, 1] → R1(Mℓ) such that g(ℓ)(0) ≡ g
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on Mℓ for all ℓ, and such that all final metrics g(ℓ)(1) have geometry uniformly bounded by some

constant C. We first reparametrize those paths such that the domain of g(ℓ) is [ ℓ
ℓ+1 ,

ℓ+1
ℓ+2 ] for every

ℓ. We then extend them to continuous paths h(ℓ) : [ ℓ
ℓ+1 ,

ℓ+1
ℓ+2 ] → Rbg

1 (M) such that each h(ℓ)

is constant outside Mℓ. The fact that we stay in Rbg
1 (M) is due to the hypothesis that g has

bounded geometry together with the fact that each path has compact support. Note that we are

not claiming that the paths have image in RC′

1 for a uniform C′. We then set Kℓ :=
⋃

k≤ℓMk for

all ℓ. We then apply Lemma 4.3 in order to obtain the global deformation of g.

Note that the ‘obvious’ way of combining the paths, without reparametrizing, could lead to a

path of metrics which does not stay in Rbg
1 (M).

In the sequel, we sometimes have paths of metrics which lie in Rbg
9/10(M) rather than Rbg

1 (M),

because we take GL-sums. This is not a problem because of the following lemma.

Lemma 4.5. Let M be a 3-manifold. Let g, g′ be two metrics in Rbg
1 (M). If there exists σ > 0

such that g, g′ are isotopic in Rbg
σ (M), then g, g′ are isotopic in Rbg

1 (M).

Proof. Let gt be an isotopy from g to g′ in Rbg
σ (M). For each t we have

√
σgt ∈ Rbg

1 (M). Hence

we can isotope g linearly to
√
σg, follow

√
σgt, and finally isotope

√
σg′ to g′.

The following technical result will allow us to obtain an isotopy on a GL-sum manifold from

isotopies on its components.

Lemma 4.6. Let M be an oriented 3-manifold which is a disjoint union of closed manifolds. Let

{p±α} and {q±α } be two families of pairs of points of M such that for every ǫ ∈ {±} and every α,

the points pǫα and qǫα lie in the same connected component of M . Let gt be a path of metrics in

Rbg
1 (M). Let ρ and η be positive numbers such that (ρ, 1, η) is a set of GL-parameters at {p±α }

w.r.t. g0 (resp. at {q±α } w.r.t. g1) and such that the 2ρ-balls for g0 centred at {p±α } (resp. the

2ρ-balls for g1 centred at {q±α }) are round and pairwise disjoint.

Then there is a continuous path of metrics g#(t) on M# = M#({(ρ, 1, η)}, {p±α}) with scalar

curvature greater than 9/10 and bounded geometry, such that g#(0) = (g0)#({(ρ, 1, η)}, {p±α}) and
(M#, g#(1)) is isometric to (M, g1)#({(ρ, 1, η)}, {q±α })).

Proof. In the compact case this follows from Proposition 2.8, so we assume thatM is non-compact

and denote by {Mℓ}ℓ∈N its components, which by hypothesis are closed. We begin by some

reductions.

Up to slightly moving points of {p±α} and applying Proposition 2.8 to get a corresponding

deformation of (g0)#({p±α }), we can assume that for all x ∈ {p±α} and y ∈ {q±α } one has x 6= y.

Without loss of generality we may assume that the support of the restriction of gt to the interval

[ ℓ
ℓ+1 ,

ℓ+1
ℓ+2 ] is contained in Mℓ. As g0 and g1 have geometry bounded by a constant C, it follows

that gt has geometry bounded by a constant depending on ℓ when t ∈ [ ℓ
ℓ+1 ,

ℓ+1
ℓ+2 ].

We then deform (M#({p±α}), (g0)#({p±α })) = (M, g0)#, up to diffeomorphism, as follows. We

apply Lemma 2.11 to deform each GL-neck Bg0(p
−, ρ)#Bg0(p

+, ρ), where p± ∈ {p±α}, into the

GL-sum

Bg0(p
−, ρ) # S3(p±) # Bg0(p

+, ρ)
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where S3(p±) is a round 3-sphere of scalar curvature 1, and the GL-sum is made at {(p−, x(p−)), (p+, x(p+))}
where x(p−) = −x(p+) ∈ S3(p±). This has the effect of replacing (M, g0)# by the GL-sum

(M ⊔X, g0 ⊔ gX)#({(p−α , x(p−α )), (p+α , x(p+α ))}α), where (X, gX) is the disjoint union of the round

3-spheres S3(p±α ). This allows to consider the GL-sums made on a component (Mℓ, gt) indepen-

dently of the other components of M , the componentMℓ being connected to a fixed disjoint union

of 3-spheres along the path.

We now begin the construction of the isotopy, with initial point the manifold (M ⊔X, g0⊔gX)#.

In every component Mℓ, choose pairwise disjoint paths [0, 1] 7→ pǫα,t, constant outside [ ℓ
ℓ+1 ,

ℓ+1
ℓ+2 ],

connecting pǫα to qǫα (the paths are disjoint thanks to the first simplification above; we also choose

paths of positive orthonormal bases which we do not mention). By compactness ofMℓ× [ ℓ
ℓ+1 ,

ℓ+1
ℓ+2 ],

there exist ρ(ℓ) > 0 and η(ℓ) > 0 such that (ρ(ℓ), 1, η(ℓ)) is a set of GL-parameters at pǫα,t with

respect to every metric gt such that t ∈ [ ℓ
ℓ+1 ,

ℓ+1
ℓ+2 ]. Moreover, we choose ρ(ℓ) small enough so that

there exists a family of pairwise disjoint 3-balls W
ǫ,(ℓ)
α ⊂ Mℓ such that Bgt(p

ǫ
α,t, 2ρ

ℓ) ⊂ W
ǫ,(ℓ)
α for

all t ∈ [ ℓ
ℓ+1 ,

ℓ+1
ℓ+2 ].

For each t ∈ [ ℓ
ℓ+1 ,

ℓ+1
ℓ+2 ], define the Riemannian manifold (M

(ℓ)
#,t, g

(ℓ)
#,t) as the GL-sum (M ⊔

X, gt ⊔ gX)#({(p−α,t, x(p−α ), (p+α,t, x(p+α )}α), using GL-parameters (ρ(ℓ), 1, η(ℓ)) when pǫα ∈ Mℓ and

(ρ, 1, η) when pǫα /∈ Mℓ. From Proposition 2.8, each metric g
(ℓ)
#,t has scalar curvature greater then

9/10 and geometry bounded by a constant depending on ℓ; moreover, there exist diffeomorphisms

φ
(ℓ)
t : M

(ℓ)

#, ℓ
ℓ+1

→ M
(ℓ)
#,t such that the pulled-back metrics (φ

(ℓ)
t )∗g

(ℓ)
#,t define a continuous path on

M
(ℓ)

#, ℓ
ℓ+1

. The manifolds M
(ℓ)

#, ℓ+1
ℓ+2

and M
(ℓ+1)

#, ℓ+1
ℓ+2

differ only on a union of GL-necks connected to

Mℓ and to Mℓ+1, due to the difference in the GL-parameters used to define these necks: from

(ρ(ℓ), 1, η(ℓ)) to (ρ, 1, η) in the case of Mℓ and from (ρ, 1, η) to (ρ(ℓ+1), 1, η(ℓ+1)) in the case of

Mℓ+1. We identify them by identifying the corresponding necks. Pulling back the paths g
(ℓ)
#,t by

diffeomorphisms φ
(ℓ−1)

ℓ
ℓ+1

◦ · · · ◦ φ(0)1
2

and concatenating, we obtain on the manifold M
(0)
#,0 a piecewise

continuous path of metrics defined on [0, 1). Now, the GL-sums are made with different parameters

creating discontinuities of the path at times ℓ+1
ℓ+2 ; thanks to Lemma 2.10 they can be smoothed

out and we obtain a continuous path g#(t) defined on [0, 1), with scalar curvature greater than

9/10 and bounded geometry. From the construction above, for any exhaustion K0 ⊂ K1 ⊂ . . . of

M
(0)
#,0 by compact subsets, t 7→ g#(t) is constant on Kj for all t close enough to 1. It follows that

t 7→ g#(t) extends continuously to the interval [0, 1]. Moreover, denoting (M
(∞)
#,1 , g

(∞)
#,1 ) the GL-sum

(M ⊔X, g1 ⊔ gX)#({(ρ, 1, η)}, {(p−α,1, x(p−α ), (p+α,1, x(p+α )}α), then the sequence of diffeomorphisms

φ
(ℓ)

ℓ
ℓ+1

◦ . . .◦φ(0)1/2 converges to an isometry from (M
(0)
#,0, g#(1)) to (M

(∞)
#,1 , g

(∞)
#,1 ). It is easy to further

deform (M
(∞)
#,1 , g

(∞)
#,1 ) into (M#({q±α }), (g1)#({q±α })), using Lemma 2.11. This concludes the proof

of Lemma 4.6.

Proof of Lemma 4.1. Fix an orientation of M . Let (M̂, ĝ) (resp. (M̂, ĥ)) be the oriented Rieman-

nian manifold obtained from (M, g) (resp. (M,h)) by metric surgery along S. By construction,

each of the metrics ĝ, ĥ has scalar curvature greater than or equal to 1 and geometry bounded by

some constant C.

Since S is a spherical splitting, every component of M̂ is closed. We denote by {Mℓ} the

collection of those components. Applying Theorem 1.9 to each Mℓ, we get a family of continuous
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paths ĝ
(ℓ)
t in R1(M̂ℓ) and positive diffeomorphisms ψ̂(ℓ) : M̂ℓ → M̂ℓ such that for each l, we have

ĝ
(ℓ)
0 = ĝ|Mℓ

and ψ̂
(ℓ)
∗ ĝ

(ℓ)
1 = ĥ|Mℓ

.

Applying Lemma 4.3 and Remark 4.4, we get a path ĥt in Rbg
1 (M̂). Denote by p±α the tips in M̂

of the caps S±
α added by the metric surgery process. Note that the tips are the same with respect

to both metrics ĝ and ĥ, as well as the balls B2ρC (p
±
α ) for a suitable radius ρC ; furthermore, these

balls are round and pairwise disjoint.

Denote by ĝ# = (ĝ)#({p±α }) (resp. ĥ# = (ĥ)#({p±α })) the GL-sum metric constructed with

GL-parameters (ρC , 1, ηC) for an appropriate ηC . We identify the corresponding manifold M̂#

with M as in the last paragraph of Section 3.

We deduce from Lemma 3.5 that ĝ# is isotopic to g and that ĥ# is isotopic to h (with uniformly

bounded geometry). To finish the proof, we need to isotope ĝ# to ĥ# modulo diffeomorphism.

Let ψ̂ : M̂ → M̂ be the positive diffeomorphism defined by setting ψ̂ = ψ̂(ℓ) on M̂ℓ. Define q±α =

ψ̂−1(p±α ). For each α and each ǫ ∈ {1,−1}, choose a positive orthonormal basis {eǫk,α} at pǫα. Set

f±
k,α = ψ̂∗(e±k,α). Since ψ̂ is a positive isometry from (M̂, ĝ1) to (M̂, ĥ), sending {q±α } to {p±α} and

{f±
k,α} to {e±k,α}, it induces an isometry from (M̂, ĝ1)#({q±α }), {f±

k,α}) to (M̂, ĥ)#({p±α}, {e±k,α})) =
(M̂#, ĥ#). Thanks to Lemma 4.6, we can isotope the former manifold—modulo diffeomorphism—

to (M̂, ĝ0)#({p±α }) = (M#, g#). This completes the proof of Lemma 4.1.

4.2 Proof of Proposition 4.2

We start with a technical lemma.

Lemma 4.7. Let M be a 3-manifold. Let (g,S, g′,S ′) be a quadruple such that

(i) g ∈ Rbg
1 (M) is a GL-metric and S = {Sα} is a spherical splitting straight for g,

(ii) g′ ∈ Rbg
1 (M) and S ′ = {S′

β} is a spherical system straight for g′,

(iii) Components of S and S ′ are mutually disjoint.

Then there exists h = h(g,S, g′,S ′) ∈ Rbg
1 (M) such that h = g near S and h = g′ near S ′.

Proof. By Theorem 1.3, there exists a finite collection F of spherical manifolds such that M is a

connected sum of members of F .

For each α, β, let Uα (resp. U ′
β) be a straight tube w.r.t. g containing Sα (resp. w.r.t. g′

containing S′
β). Assume that all theses tubes are pairwise disjoint. Let M̂ be a 3-manifold obtained

from M , by splitting every Uα and U ′
β along a pair of straight spheres on each side of the Sα and

of the S′
β , and glueing 3-balls to the boundary. All components of M̂ are closed. All components

containing some Sα or some S′
β are topological 3-spheres. All other components are connected

sums of members of F .

We define a metric ĥ on M̂ as follows. On components containing some Sα (resp. S′
β) we let

ĥ be the metric obtained from g (resp. g′) by metric surgery on the straight tubes. In particular

ĥ = g near Sα and ĥ = g′ near S′
β . On the other components we let ĥ be a GL-sum of round

metrics on members of F , of uniformly bounded geometry and scalar curvature ≥ 2.
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Finally we define h ∈ Rbg
1 (M) by doing the GL-sum of (M̂, ĥ), in such a way that h = g near

Sα and h = g′ near S′
β .

Proof of Proposition 4.2. Let S = {Sα} be a spherical splitting that is straight for g. By local

finiteness of S and S ′, up to replacing S by a sub-system there exists a sub-system S ′′ ⊂ S ′ such

that every component of S is disjoint from every component of S ′′.

By Lemma 4.7 there exists a metric h′ = h(g,S, g′,S ′) ∈ Rbg
1 (M) such that h′ = g near S and

h′ = g′ near S ′′. Applying Lemma 4.1 to the triple (h′, g,S) we see that h′ and g are isotopic

modulo diffeomorphism.

By Lemma 4.7 there exists a metric h = h(h′,S ′′, g′,S ′\S ′′) ∈ Rbg
1 (M) such that h = h′ near S ′′

and h = g′ near S ′\S ′′. From the fact that h′ = g′ near S ′′, we deduce that h = g′ near S ′. It follows

from Lemma 4.1 applied to the triple (h, h′,S ′′) that h is isotopic to h′ modulo diffeomorphism.

Hence h is isotopic to g modulo diffeomorphism, which is the required conclusion.

5 Surgical solutions of Ricci flow

In this section we recall the basic properties of the surgical solutions constructed in [BBM11].

5.1 Evolving metrics and surgical solutions

Definition 5.1. An evolving Riemannian 3-manifold is a family {(M(t), g(t))}t∈I of (possibly

empty or disconnected) Riemannian 3-manifolds indexed by an interval I ⊂ R. It is piecewise C1-

smooth if there exists a subset J of I which is discrete as a subset of R and satisfies the following

conditions:

(i) On each connected component of I \ J , t 7→M(t) is constant and t 7→ g(t) is C1-smooth.

(ii) For each t0 ∈ J , M(t) = M(t0) for all t < t0 close enough to t0 and t 7→ g(t) is left

continuous at t0.

(iii) For each t0 ∈ J\sup I, t 7→ (M(t), g(t)) has a right limit at t0, denoted by (M+(t0), g+(t0)).

A time t ∈ I is singular if t ∈ J and regular otherwise.

Definition 5.2. A piecewise C1-smooth evolving 3-manifold (M(t), g(t)) is called a surgical solu-

tion if the following holds:

(i) The Ricci Flow equation dg
dt = −2Ricg(t) is satisfied at all regular times.

(ii) For each singular time t we have Rmin(g+(t)) ≥ Rmin(g(t)).

(iii) For each singular time t there is a locally finite collection S(t) of disjoint embedded 2-

spheres in M(t) and a manifold M ′(t) such that

(a) M ′(t) is obtained from M(t) \ S(t) by capping-off 3-balls;

(b) M+(t) is a union of connected components ofM ′(t) and g+(t) = g(t) onM+(t)∩M(t);
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(c) Each component ofM ′(t)\M+(t) is spherical or diffeomorphic to R3, S2×S1, S2×R,

RP 3#RP 3 or a punctured RP 3.

For a singular time t, the components of M ′(t) \M+(t) are called the discarded components. The

surgical solution is extinct if for some t, all components are discarded, i.e. M+(t) =M(t) = ∅.

Remark 5.3. When the initial metric has uniformly positive scalar curvature and each g(t) is

complete with bounded sectional curvature, we deduce from the maximum principle and Prop-

erty (ii) a lower bound for the scalar curvature which blows up in finite time; thus under these

hypotheses the solution must be extinct.

In [BBM11] we constructed a special kind of surgical solutions, called (r, δ, κ)-surgical solutions,

which use the same three parameters as Perelman’s Ricci flow with surgery and one more which

serves as a curvature threshold to trigger the surgery. We will not need the precise definition here.

For us, the two main properties of (r, δ, κ)-solutions are that whenever t is a singular time, the man-

ifold (M+(t), g+(t)) is obtained from (M(t), g(t)) by metric surgery on ε-necks, and the discarded

components are covered by so-called canonical neighbourhoods. We have already reviewed metric

surgery in Section 3. In the next subsection, we discuss the notion of a canonical neighbourhood.

5.2 Canonical neighbourhoods and locally canonical metrics

Let (M, g) be a Riemannian 3-manifold and ε, C > 0 be constants. There are four types of canonical

neighbourhoods: necks, caps, ε-round components and C-components. We already defined the

notion of an ε-neck in Section 3. A component X ofM is ε-round if after scaling to make R(x) = 1

at some point, X is ε-close to a round metric of scalar curvature one. A component of M is a C-

component if it is diffeomorphic to S3 or RP 3, and has positive sectional curvature and geometry

bounded by C after scaling. More precision can be given on the geometry of these neighbourhoods

(see e.g. Definition 4.2.8 in [BBB+10] or [Mar12] p. 837).

An ε-cap is an open subset C ⊂M diffeomorphic to a 3-ball or to RP 3 minus a 3-ball, with an

ε-neck N ⊂ C such that Y = C −N is a compact submanifold with boundary. The boundary ∂Y

of the core Y (interior of C − N) is required to be the middle sphere of an ε-neck. An (ε, C)-cap

is an ε-cap such that, after rescaling so that R(x) = 1 for some point x in the cap, the diameter,

volume and curvature ratios at any two points are bounded by C.

Definition 5.4. A point x in (M, g) is said to be centre of an (ε, C)-canonical neighbourhood if

it is centre of an ε-neck, or centre of an (ε, C)-cap, or is contained in an ε-round component or a

C-component. If each point of (M, g) is centre of a (ε, C)-canonical neighbourhood, we will say

that g is ε-locally canonical.

We now fix the constants ε, C, refining the choice made in [BBM11], so that the interpolation

lemmas of [Mar12] hold. Set ε = min(δ0, ε3), where δ0 is the constant from Theorem 3.1 and ε3

is from [Mar12, Lemma 6.3]. Then set C = max(100, 2Csol(ε/2), 2Cst(β(ε)ε/2)) as in [BBM11,

p. 947].

From [BBM11, section 5.2] we gather the following existence result, which can be taken as a

black box for the rest of the paper:
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Theorem 5.5. Given a positive number A, there exist a positive number τ and a tuple Q = Q[ε−1]

with the following property. Let (M, g) be a complete Riemannian manifold with geometry bounded

by A, and with scalar curvature greater than or equal to 1. Then there exists an extinct surgical

solution (M(·), g(·)) defined on [0, 2] such that (M(0), g(0)) = (M, g) and satisfying the following

properties:

1. For all t ∈ [0, 2], we have g(t) ∈ RQ0

1 (M(t)),

2. The solution is smooth on [0, τ ] and, for all t ∈ [τ, 2], we have g(t) ∈ RQ
1 (M(t)).

3. At each singular time t, the manifold M ′(t) has a metric g′(t) ∈ RQ
1 (M

′(t)) obtained from

g(t) by metric surgeries in ε-necks, and such that

(a) g+(t) = g′(t) on M+(t).

(b) All discarded components of (M ′(t), g′(t)) are ε-locally canonical.

4. The number of singular times is finite and bounded by a constant depending on A.

In the proof of Theorem B, Theorem 5.5 will allow to isotope an arbitrary metric to a GL-sum

of ε-locally canonical ones. Thus it is useful to be able to isotope locally canonical metrics to

GL-metrics. This is the purpose of the next lemma:

Lemma 5.6. Given A[ε−1] there exists B[ε−1] such that the following holds. Let M be a connected

3-manifold and let g be an ε-locally canonical metric belonging to RA[ε−1]

1 (M). Then there exists

an isotopy gt ∈ RB[ε−1]

1 (M) such that g0 = g and g1 is a GL-metric.

Proof. If M is compact, every metric is a GL-metric (the empty collection is a spherical splitting),

so we assume that M is non-compact. Let g ∈ RA[ε−1]

1 (M) be an ε-locally canonical metric.

From [BBM11, proof of Proposition 7.2] we have three cases:

1. M is covered by ε-necks and is diffeomorphic to S2 ×R, or

2. M is covered by ε-necks and one ε-cap diffeomorphic to B3, and M is diffeomorphic to R3,

or

3. M is covered by ε-necks and one ε-cap diffeomorphic toRP 3\{point}, andM is diffeomorphic

to RP 3 \ {point}.

Take a maximal family of disjoint ε-necks. From the above we see that the middle spheres of

these necks form a spherical splitting of M . Thus it suffices to deform the metric g to a metric

with respect to which these spheres are straight.

In each neck we apply the following deformation. We use the parametrisation to identify a

neighbourhood of the middle sphere with S2 × (−4, 4). Let h be the pulled-back rescaled metric

on S2 × (−4, 4). Now, we choose a cutoff function η : (−4, 4) → [0, 1] such that η(s) = 1 on [−2, 2]

and η(s) = 0 when |s| is close to 4. Then for t ∈ [0, 1] we set ht = (1 − η(s)t)h + η(s)tgcyl, where

s is the radial coordinate. We observe that h1 = gcyl on S
2 × [−2, 2] and that the deformation ht

is constant near the boundary of S2 × (−4, 4). It follows that the rescaled pushed-forward metric

on M defines the required isotopy.

20



6 Isotopies of uniformly bounded geometry

In this section we show that if (M, g) is isotopic to a GL-metric in some RA
σ then, after a GL-sum

for suitable parameters, (M#, g#) is isotopic to a GL-metric in some RB
σ′ , with B and σ′ depending

on A, σ and the parameters. The following proposition gives a more precise statement.

Proposition 6.1. Let σ > 0. For all A = A[ε−1] and ρ ∈ (0,min{c(3)A0
−1/2, 1}), there ex-

ists Ā# = Ā#
[ε−1] and η > 0 with the following property. Let (M, g) be an oriented 3-manifold and

{(p−α , p+α )} be a family of pairs of points. Set P = {p±α} ⊂M and (M#, g#) = (M, g)#({(ρ, σ, η)}, {p±α }).
Suppose that the following assertions hold:

(a) For all x, y ∈ P, if x 6= y, then Bg(x, 3ρ) ∩Bg(y, 3ρ) = ∅, and g is round on Bg(x, 3ρ).

(b) The metric g is isotopic in RA
σ (M) to some GL-metric.

Then g# is isotopic in RĀ#

9σ/10(M#) to some GL-metric.

We first explain some of the key ideas informally. Let gt be an isotopy in RA
σ (M) from g to some

GL-metric. We would like to apply Proposition 2.8, moving base points p±α along continuous paths

if necessary, to get a continuous GL-sum (M, gt)#. The main difficulty is that we have no control

on dgy (x, y), for x 6= y ∈ P . For example, a compact component of M containing an unspecified

number of p±α could have a diameter becoming small along the path of metrics gt; therefore the

points p±α become close to each other. Moreover, a reparametrisation trick, as in Lemma 4.6, is

not possible as we deal with possibly non-compact components and the metric g1 does not a priori

verify the assumption a).

The trick is to first deform continuously (M#, g#) into a manifold in which is obtained by con-

necting sum around points which are far away. Looking at p+α and p−α , the GL-sum gives rise to a

metric on the cylinder joining neighbourhoods of these two points which is close to gcyl. We modify

it continuously, applying twice Lemma 2.11, so that it becomesBρ(p
−
α )#S3(p−α )#S3(p+α )#Bρ(p

+)

where S3(p±α ) are round 3-spheres which will undergo only very small deformations during the pro-

cess (see Sublemma 6.5). Then we perform a surgery on this topological cylinder by cutting it

between the two spheres and glueing 3-balls on either side.

Doing this for every α creates some distance between the points p+α and p−α , so that we can

deal with separately. Note that they may remain in the same connected component or not. The

next step is to produce a set Psep ⊂ P such that its points remain sufficiently separated during

the isotopy (see Lemma 6.3). Each p0 ∈ Psep has a neighbourhood which contains only finitely

many points of P , say (p1, . . . , pn). We then do the GL-sum of S3(p0) with n round spheres and

we continuously move each pi in one of them. They will be only slightly deformed and hence the

points will remain far apart.

This process deforms (M#, g#) into a manifold isometric to a GL-sum (M ⊔X, g⊔gX)#, where

gX is a GL-sum of round spheres, and where the connected sum is made between M and X along

a sparse set of points, which remain far from each other along gt ⊔ gX . We can then safely apply

Proposition 2.8 to get a continuous path (gt ⊔ gX)# with controlled geometry. We summarise the

idea saying that it amounts to ’externalising’ the connected sum.

We now turn to the formal proof.
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Proof of Proposition 6.1. Let A, ρ and σ be as in the statement of Proposition 6.1 and let gt be

an isotopy in RA
σ (M) such that g0 = g and g1 is a GL-metric.

Let η = η(A2) be the constant given by Lemma 2.7. Let A′ = A#(A, ρ, σ, η) be the constant of
Proposition 2.8. Set σ′ = 9

10σ. Then (M#, g#) = (M, g)#({(ρ, σ, η)}, {p±α }) has scalar curvature

greater than σ′ and geometry bounded by A′. Let ρ′ = min{c(3)A′
0
−1/2

, 1
10ρ}, η′ = η(A′

2) be

the constant given by Lemma 2.7, σ̄ and Ā be the constants given by Lemma 2.10 applied to

γ1 = γ(ρ, σ, η), γ2 = γ(ρ′, σ′, η′). We denote by ¯̄σ = ¯̄σ(ρ, σ, η) and ¯̄A = ¯̄A(ρ, σ, η) the constants

given by Lemma 2.11. We then define A′′ = min{A#(A′, ρ′, σ′), Ā, ¯̄A} and σ′′ = min{(9/10)2σ, ¯̄σ}.

Definition 6.2. We say that a subset P ⊂M is ρ-separated for an isotopy gt if

∀x 6= y ∈ P ,
⋃

t

Bgt(x, ρ) ∩
⋃

t

Bgt(y, ρ) = ∅.

In particular, if P = {p±α} is 3ρ-separated, then there exist pairwise disjoint topological 3-balls

W±
α such that Bgt(p

±
α , 2ρ) ⊂ W±

α for all t, as in the assumptions of Proposition 2.8 (with fixed

p±α ).

The first step is to divide points of P into disjoint open connected subsets Uj of M , such that

each Uj contains finitely many elements of P and such that they are in some sense not to close one

from each other. This will allow, by moving the base points independently in each Ui, to deform

the GL-sum g# with controlled geometry.

Lemma 6.3. Up to moving points of P by a distance less than 20ρ′ ≤ 2ρ, there exist a subset

Psep ⊂ P, a family (Uj), j ∈ J ⊂ N, of disjoint open connected subsets of M and a family (Ak) of

open subsets of M , such that,

• Psep is 1-separated for gt, for all t.

• The 7ρ′-neighborhood of P is contained in
⋃
j∈J

Uj and for all j, |P∩Uj | <∞ and |Psep∩Uj | =
1.

• ⋃
k

Ak =
⋃
j

Uj and each Ak is a union of finitely many Uj.

• For all k 6= l, dg(Ak, Al) ≥ 6ρ′.

Proof. Without loss of generality, we assume that M is connected. If P is finite, then we set

U0 =M , A0 = U0 and Psep = {p0}, where p0 is an arbitrary point of P .

Suppose that P is infinite. Up to moving slightly some points of P , we will define Psep =

{p0, p1, . . . , } ⊂ P and (Uj)j∈N with Psep ∩Uj = pj . We use the following property, which is easily

derived from the continuity of t 7→ gt and the compactness of [0, 1]: for every p ∈M and R0 > 0,

there exist a compact subset K ⊂M and R1 > 0 such that

∀s, t ∈ [0, 1], Bgs(p,R0) ⊂ K ⊂ Bgt(p,R1).
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This property implies that for every p ∈ M , for every sufficiently large R, for every x ∈ M ,

if dg(p, x) ≥ R, then {p, x} is 1-separated for gt. Let us fix some p = p0 ∈ P and a radius

R0 > 1. Set R̃0 = R0 − 20ρ′. Up to moving points of (Bg(p0, R0) \ Bg(p0, R̃0)) ∩ P inside

Bg(p0, R̃0), we can assume that the closed annulus Bg(p0, R0) \ Bg(p0, R̃0) does not intersect P .

Let Ũ0 = Bg(p0, R̃0 + 7ρ′). We add to Ũ0 all the connected components of M \ Ũ0 containing

only finitely many elements of P ; there are finitely many such components. This defines an open

connected subset U0 ⊂M such that

• The set U0 ∩ P is finite.

• For every component C of M \ U0, the set C ∩ P is infinite.

• We have ∂U0 ⊂ ∂B(p0, R̃0 + 7ρ′).

• The 7ρ′-neighborhood of P ∩ U0 is contained in U0.

Set A0 = U0. Let C1, . . . , Ck be the connected components of M \ (B(p0, R0 − 7ρ′)∪A0). Note

that d(Ci, A0) ≥ 6ρ′ and that the 7ρ′-neighborhood of ∂Ci does not intersect P . Choose for each

i ∈ {1, . . . , k} a point pi ∈ Ci far enough from ∂Ci and such that for every t ∈ [0, 1], the set

{p0, p1, . . . , pk} is 1-separated w.r.t. gt. Choose a radius R1 which is bigger than 2d(pi, ∂Ci) for

all i ≥ 1. Set R̃1 = R1 − 20ρ′, and for every i, set Ũi := Int(Ci) ∩ B(pi, R̃1 + 7ρ′). Perform, in

restriction to Int(Ci), the previous construction starting from Int(Ci)∩B(pi, R1), i.e. move points

of Int(Ci) ∩B(pi, R1) ∩ P inside Int(Ci) ∩B(pi, R̃1).

Define Ui ⊂ Int(Ci) by adding to Ũi connected components of Int(Ci) \ Ũi containing finitely

many elements of P . Thus Ui∩P is finite, and for each component C of Int(Ci)\Ui, the set C ∩P
is infinite. Furthermore, ∂Ui ∩ Int(Ci) is contained in ∂B(pi, R̃1 + 7ρ′), and the 7ρ′-negihborhood

of P ∩ Ui is contained in Ui.

Observe that the Ui’s are pairwise disjoint. Setting A1 = U1∪· · ·∪Uk, we have d(A0, A1) ≥ 6ρ′.

We now iterate the construction on M \ (A0 ∪ A1 ∪B(p0, R0 − 7ρ′) ∪ · · · ∪B(pi, R1 − 7ρ′)).

Up to deforming slightly g# by moving the base points, we can assume that P ⊃ Pset as given

by Lemma 6.3. The deformation of g# which ‘externalises’ most of its GL-sums is given by the

following lemma.

Lemma 6.4. There exist a 3-manifold X, a GL-metric gX ∈ RA
1 (X), and an injective map

x : Psep → X with the following properties:

1. x(Psep) ⊂ X is 3ρ-separated for gX, and gX is round on its 3ρ-neighbourhood.

2. The GL-sum (M ⊔X, g⊔gX)#({(ρ, σ, η)}, {(p, x(p)) | p ∈ Psep}) has scalar curvature greater

than σ′ and geometry bounded by A′, and (M ⊔X)# is diffeomorphic to M#.

3. (M#, g#) is isotopic modulo diffeomorphism to (M ⊔X, g⊔gX)# through metrics with scalar

curvature greater than σ′′ and geometry bounded by A′′.
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Proof. We construct an isotopy {gt#}t∈[0,5] on M#, and a manifold (X, gX) as above, such that

(M#, g
5
#) is isometric to (M ⊔X, g ⊔ gX)#.

Recall that the GL-sum construction associates to each pair p± ∈ {p±α} a GL-neck

Bρ(p
−)#Bρ(p

+) ≈ S2 × I ⊂M#

where the metric g# is cylindrical near the middle of the neck. For each p± we denote by S3(p−)

and S3(p+) two round 3-spheres with scalar curvature σ, and we fix two points x(p−) ∈ S3(p−)

and x(p+) ∈ S3(p+).

Sublemma 6.5. There exists an isotopy {gt#}t∈[0,1], which deform each GL-neck Bρ(p
−)#Bρ(p

+),

without changing the metric near the boundary, through metrics with scalar curvature ≥ ¯̄σ and

geometry bounded by ¯̄A, into the GL-sum

Bρ(p
−)#S3(p−)#S3(p+)#Bρ(p

+)

made with parameters (ρ, σ, η) at {(p−, x(p−)), (−x(p−),−x(p+)), (x(p+), p+)}.

Proof. Apply Lemma 2.11 twice.

Undoing each GL-sum S3(p−)#S3(p+) of (M#, g
1
#) splits the manifold into a manifold (M̂, ĝ1)

where M̂ is diffeomorphic to M and ĝ1 ∈ RA′

σ′ (M̂). Our goal is to construct an isotopy {ĝt}t∈[1,5]

on M̂ . The isotopy gt# will be obtained from ĝt by reconnecting each pair S3(p−)#S3(p+).

Observe that (M̂, ĝ1) is simply the manifold obtained from (M, g) by replacing each ball

Bρ(p) by Bρ(p)#S3(p), for all p ∈ {p±α}. We denote by H(p) ⊂ S3(p) the hemisphere cen-

tred on −x(p) (which is on the opposite of the hemisphere connected to Bρ(p)). Therefore

H(p) ⊂ Bρ(p)#S3(p) ⊂ M̂ .

Sublemma 6.6. There exist a 3-manifold X̂ and a GL-metric ĝX ∈ RA′

σ′ (X̂), an injective map

x̂ : Psep → X̂ and an isotopy (ĝt)t∈[1,5] on M̂ such that:

1. Psep is 3ρ-separated for (ĝt), and x̂(Psep) is 3ρ-separated for gX̂.

2. ĝt = ĝ1 on all hemispheres H(p−), and H(p+).

3. ĝt, resp. ĝ5, has scalar curvature greater than σ′′ (resp. σ′) and geometry bounded by A′′

(resp. A′.)

4. (M̂, ĝ5) is isometric to (M ⊔ X̂, g⊔ gX̂)#({(p, x̂(p)) | p ∈ Psep}). Moreover H(p) ⊂ X̂ for all

p ∈ P.

Proof. By Lemma 6.3, the set P is divided into open connected subsets Uj ofM and these subsets

are gathered into open subsets Ak such that each Ak is a union of finitely many Ui and d(Ak, Al) ≥
6ρ′ when k 6= l. Let Vk ⊂ (M, g) denote the 3ρ′-neighbourhood of Ak. By construction, the Vk’s

are pairwise disjoint. For each k, let V̂k be the corresponding subset in M̂ . The V̂k’s are also

pairwise disjoint.
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We will contruct isotopies (ĝV̂k
t )t∈[1,5] on M̂ , with support in V̂k, and then define the isotopy

(ĝt)t∈[1,5] on M̂ by as {
ĝt = ĝV̂k

t on V̂k, ∀k
ĝt = ĝ1 on M̂ \⋃k V̂k.

The (ĝV̂k
t ) are constructed independently of each other. Let us fix k and the subset V̂k. For

the sake of simplicity we now drop the index k. To V̂ = V̂k we associate a compact GL-manifold

(X̂V̂ , gX̂V̂
), which in fact is simply a (possibly non connected) GL-sum of a finite number of round

3-spheres, and an isotopy ĝV̂t defined on M̂ with support in V̂ , starting from ĝ1. The set V = Vk

is the 3ρ′-neighbourhood of A = Ak. The open set A is a union Ui1 ∪ · · · ∪ UiN .

For simplicity, we first discuss the case where N = 1 and perform a four-step deformation of ĝ1

into a metric ĝ5. The general case will be tackled later.

Droping indices again, we consider U = Ui1 and denote by P ∩ U = {p1, . . . , pn} where Psep =

{p1}.
Step 1.Deform (Bρ(p1)#S

3(p1), ĝ1), without changing the metric near the boundary nor on the

hemisphere H(p1), through metrics with scalar curvature ≥ ¯̄σ and geometry bounded by ¯̄A, into the

GL-sum

(Bρ(p1)# S3# . . . #S3

︸ ︷︷ ︸ , g#can(n))

n spheres

where can(n) denotes a metric obtained by GL-sum of n round 3-spheres of scalar curvature σ,

made with parameters (ρ, σ, η). Let ĝV̂2 ∈ RA′

σ′ (M̂) be the resulting metric.

Proof. Apply Lemma 2.11 (n− 1 times).

Next we choose points x′(p2), . . . , x
′(pn) ∈ Bρ(p1)#S

3(p1) so that the balls B6ρ(x
′(pi)) (for the

metric g#can(n)) are round, pairwise disjoint and at distance ≥ 6ρ′ from H(p1) (this is possible

since the number of 3-spheres is large enough). Our next goal is to deform ĝV̂2 by moving each base

point pi to x
′(pi), using paths in V#S3(p1). Before doing that, we need to adjust the parameters

of the GL-sum to be compatible with the metric g#can(n) (a priori, the parameters (ρ, σ, η) we

begin with are compatible with g only). Note that the metric g#can(n) has scalar curvature greater

than σ′ and geometry bounded by A′. Hence it admits (ρ′, σ′, η′) as GL-parameters at any point,

by definition of ρ′ and η′.

Step 2. For each i ∈ {2, . . . , n}, deform ĝV̂2 on Bρ(pi)#S
3(pi), without changing the metric near

the boundary nor on the hemisphere H(pi), through metrics with scalar curvature greater than σ̄

and geometry bounded by Ā, into the GL-sum made at {(pi, x(pi))} with the parameter (ρ′, σ′, η′).

Let ĝV̂3 ∈ RA′′

σ′′ (M̂) be the resulting metric.

Proof. Apply Lemma 2.10.
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The crucial step is the following.

Step 3. There is an isotopy (ĝV̂t )t∈[3,4] with scalar curvature greater than σ′′ and geometry

bounded by A′′, which is constant on the hemispheres H(pi), i ≥ 1, such that (V̂ , ĝV̂4 ) is isometric

to the GL-sum 
V # S3(p1) #

⊔

i≥2

S3(pi) , g # can(n) # ⊔i≥2 can




made at (p1, x(p1)) and {(x′(pi), x(pi)) | i ≥ 2} (with parameter (ρ, σ, η) for i = 1 and (ρ′, σ′, η′)

for i ≥ 2).

Proof. Recall that can(n) is a metric on S3 isometric to a GL-sum of n round spheres of scalar

curvature σ. We will apply Proposition 2.8 iteratively on the manifold M #S3(p1) ⊔
⋃

i≥2 S
3(pi)

with parameters (ρ′, σ′, η′), moving points pi ❀ x′(pi) along paths in V #S3(p1). Proposition

cannot be applied a priori by moving simultaneously the (n− 1) paths, because this would require

having pairwise disjoint 3ρ′-neighbourhoods for these paths. As the paths must traverse the neck

Bρ(p1)#Bρ(x(p1)), this cannot be achieved with a radius ρ′ independent on n. The trick is to

apply the proposition iteratively by moving only one point at a time, i.e. we move pi ❀ x′(pi),

others points x′(p2), . . . , x
′(pi−1), pi+1, . . . , pn being fixed. In order to do this, it is sufficient to

check the following claim:

Claim For each i ≥ 2, there exists a continuous path from pi to x
′(pi) in

(
V #S3(p1)

)
\

⋃

j≥2,j 6=i

B6ρ′(pj) ∪B6ρ′(x′(pj))

and whose 3ρ′-neighbourhood is contained in V #S3(p1) \H(p1).

Let prove this claim. Let i ≥ 2. To begin we prove that there exists a path in U from pi to p1,

which remains at distance≥ 6ρ′ of all pj (j ≥ 2, j 6= i). By definition of U (cf. Lemma 6.3), each ball

B6ρ′(pj) is compactly contained in U . Note that d(pj , pk) ≥ 12ρ′ for k 6= j, and that 6ρ′ is smaller

than the injectivity radius. Since U is connected, there is a path in U from pi to p1. If it intersects

B6ρ′(pj), we can replace the part of the path in B6ρ′(pj) by an arc in the boundary sphere S6ρ′(pj).

This arc is contained in U and at distance ≥ 6ρ′ of any other pk. Hence U \ (∪j≥2,j 6=iB6ρ′(pj)) is

path-connected. Similarly in (S3(p1), can
(n)), there exists a path joining x(p1) to x′(pi), disjoint

from B6ρ′(x′(pj)) (j ≥ 2, j 6= i) and at distance ≥ 6ρ′ from H(p1). Using these two paths, we

can find a path in the connected sum U #S3(p1) (made at (p1, x(p1)) joining pi to x
′(pi) and at

distance ≥ 6ρ′ from pj , x
′(pj) and H(p1). Recalling that the 3ρ′-neighbourhood of U is contained

in V , it follows that the 3ρ′-neighbourhood of the path is contained in V #S3(p1) \H(p1). This

proves the claim, and concludes the proof of Step 3.

Step 4. For each i ∈ {2, . . . , n}, deform ĝV̂4 on Bρ(x
′(pi))#S

3(pi), without changing the met-
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ric near the boundary nor on the hemisphere H(pi), through metrics with scalar curvature greater

than σ̄ and geometry bounded by Ā, into the GL-sum made at {(x′(pi), x(pi))} with the parameter

(ρ, σ, η). Let ĝV̂5 ∈ RĀ′

σ′ (M̂) be the resulting metric.

Proof. Apply Lemma 2.10 again.

(Note: There is an abuse of notation in the statement: ĝV̂4 is a metric defined on M̂ , and in

particular on its submanifold Bρ(pi)#S
3(pi), but can be seen as a metric on Bρ(x

′(pi))#S
3(pi)

only modulo the isometry of Step 3. )

We define (X̂V̂ , gX̂V̂
) as the GL-sum

(
S3(p1) # S3(p2) # . . . # S3(pn), can

(n) # can # . . . # can
)

(1)

made at {(x′(pi), x(pi)) | i ≥ 2} with parameter (ρ, σ, η). We have that (V̂ , ĝV̂5 ) is isometric to the

GL-sum (
V ⊔ X̂V̂ , g ⊔ gX̂V̂

)
#
({(p1, x(p1)})

where the point x(p1) ∈ S3(p1) is considered as a point of XV̂ .

This concludes the construction of ĝV̂t and (X̂V̂ , gX̂V̂
) when N = 1.

Let us now deal with the general case. Write [1, 5] as an union of successive intervals, [1, 5] =

I1 ∪ I2 ∪ . . . ∪ IN . Recall that A = Ak = Ui1 ∪ . . . ∪ UiN , and that V is the 3ρ′-neighbourhood

of A. On I1 we use the four-step procedure above (modulo the obvious reparametrisation) on the

set Ui1 . Let t1 = max I1. The metric (V̂ , ĝV̂t1) is isometric to the GL-sum of (V, g) with (X1, gX1)

(a finite connected GL-sum of round 3-spheres as in (1)) and a finite number of round 3-spheres

S3(pα). The points used for this GL-sum are the elements of (Psep ∩ Ui1) ∪ (P ∩ (Ui2 ∪ . . . UiN ))

and corresponding points in X1 and the S3(pα). Starting from this new GL-sum, apply on Ui2

during the interval I2 the four-step procedure as above. Then pull back the deformation to V̂ by

the isometry. Let (X2, gX2) be the compact connected GL-sum of round 3-spheres created at this

step. Iterate. The GL-manifold (X̂V̂ , gX̂V̂
) is then defined as the disjoint union

⋃
i=1,...,N (Xi, gXi).

Having define isotopies (ĝV̂k
t )t∈[1,5] on M̂ , with support in V̂k, we thus define the isotopy

(ĝt)t∈[1,5] on M̂ by {
ĝt = ĝV̂k

t on V̂k, ∀k
ĝt = ĝ1 on M̂ \⋃k V̂k.

We define (X̂, gX̂) as the disjoint union of the (X̂V̂k
, gX̂V̂k

). For each p ∈ Psep the point x(p) ∈ S3(p)

can be considered as a point in X̂, and we set x̂(p) = x(p). That finishes the proof of Sublemma 6.6.

We conclude the proof of Lemma 6.4. To define {gt#}t∈[1,5], we reconnect (M̂, ĝt) into (M#, g
t
#)

by doing the GL-sum H(p−)#H(p+) for all pairs of hemispheres, with parameters (ρ, σ, η) (recall
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that ĝt is constant on the hemispheres). Thus we set gt# = (gt)#({(−x(p−α ),−x(p+α ))}α). Similarly,

we define (X, gX) as (X, gX) = (X̂, ĝX)#({(−x(p−α ),−x(p+α ))}α).

We conclude the proof of Proposition 6.1 using Lemmas 6.3 and 6.4. These lemmas imply

that Psep ⊔ x(Psep) ⊂ M ⊔ X is 3ρ-separated for gt ⊔ gX . Therefore Proposition 2.8 applies on

the manifold (M ⊔X, gt ⊔ gX) with basepoints {(p, x(p)) | p ∈ Psep}) (which are fixed), and with

parameters ρ, σ, η. This proposition gives a deformation (M ⊔X, gt ⊔ gX)#, with scalar curvature

greater than σ′ and geometry bounded by A′, towards the GL-sum (M ⊔X, g1 ⊔ gX)#, where g1

and gX are GL-metrics. Let us denote by SM (resp. SX) a straight spherical splitting of (M, g1)

(resp. (X, gX)). After slightly deforming the GL-sum (g1 ⊔ gX)# by moving base points (p, x(p))

(for p ∈ Psep), we can assume that SM ⊔ SX embeds in (M ⊔X)# and is straight for (g1 ⊔ gX)#.

Denoting by S# a collection of straight spheres associated to the GL-sum at {(p, x(p)) | p ∈ Psep},
then S# ⊔ SM ⊔ SX is a straight spherical splitting of (M ⊔X, g1 ⊔ gX)#. By applying dilations,

we can finally arrange that the isotopy starting from g# has scalar curvature greater than 9σ/10,

and geometry bounded by some Ā#.

7 Isotopy to a GL-metric: proof of Theorem B

The goal of this section is to prove Theorem B, which we restate below.

Theorem 7.1. For every A > 0 there exists B = B(A) > 0 such that for every 3-manifold M and

every metric g ∈ RA
1 (M), there exists a GL-metric g′ ∈ RB

1 (M) isotopic to g in RB
1 (M).

Proof. Let A > 0. Theorem 5.5 gives a number τ > 0 and a tuple Q = Q[ε−1].

Let M be a 3-manifold and g ∈ RA
1 (M). Fix an orientation of M . By Theorem 5.5 and

Remark 5.3 we get a surgical solution (M(·), g(·)) with geometry bounded by Q0 and singular

times 0 < t1 < . . . < tj+1 < 2 such that M(t) = ∅ when t ∈ (tj+1, 2]. Thanks to Theorem 5.5, the

number of surgeries j + 1 is bounded by a number depending on A only. Let us set t0 = 0.

For convenience we set M0 = M and g0(t) = g(t) on [t0, t1]. Moreover we set, for all i ≥ 1,

Mi =M+(ti); we define gi on [ti, ti+1] by gi(ti) = g+(ti) and, for all t ∈ (ti, ti+1], gi(t) = g(t). We

set (M ′
i , g

′
i) = (M ′(ti), g

′(ti)). Recall that M
′(ti) is the union of the post-surgery manifold Mi and

all discarded components. Finally we set Mj+1 = ∅.
Let (Pi) be the following property:

(Pi) : There exists Bi = (Bi
k)0≤k≤[ε−1] and a map hi : [ti, 2] → RBi

0
1 (Mi) such that

(1) hi(ti) = gi(ti) and each component of (Mi, hi(2)) is a GL-metric,

(2) hi(t) has geometry bounded by Bi when t ∈ [max(ti, τ), 2].

We will prove that (Pi) holds for all i ∈ {0, . . . , j} by backward induction. This will show that

(P0) is true, which gives the required conclusion.

Let us first prove that (Pj) holds. We consider the Riemannian manifold (Mj , gj(tj)). We need

to construct a metric isotopy hj(t) on Mj for t ∈ [tj , 2].
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We set hj(t) = gj(t) on [tj , tj+1]. Item 1) of Theorem 5.5 shows that this path lies in RQ0

1 (Mj),

and Item 2) of this theorem proves that (2) of Property (Pj) holds in restriction to [max(tj , τ), tj+1].

We want to extend hj to the interval [tj+1, 2]. Recall that the splitted Riemannian manifold

(M ′
j+1, g

′
j+1) is ε-locally canonical since Mj+1 = ∅. Lemma 5.6 then applies to each component

of (M ′
j+1, g

′
j+1) and provides an isotopy t ∈ [tj+1, 2] → g′j+1(t) ∈ RB′

1 (M ′
j+1), where B′ = B(Q),

such that each component of (M ′
j+1, g

′
j+1(2)) is a GL-metric. We denote by (M ′

j+1)# the manifold

obtained from (M ′
j+1, g

′
j+1) by GL-sum at tips of pairs of caps produced by the metric surgery

for appropriate parameters. We now identify (M ′
j+1)# with Mj. Applying Proposition 6.1 and

a rescaling, we deduce an isotopy t ∈ [tj+1, 2] → h′j(t) ∈ RB′′

1 (Mj), starting from the GL-sum

((M ′
j+1)#, g

′
j+1(tj+1)#), such that each component of (Mj , h

′
j(2)) is a GL-metric. Using Lemma

3.5 in a small interval near tj+1 in [tj+1, 2], we isotope each surgery neck of (Mj , hj(tj+1)) to

the corresponding GL-sum of caps of (Mj , h
′
j(tj+1)). Denoting hj the corresponding isotopy on

[tj+1, 2], we obtain a continuous path hj on [tj , 2]. This proves Property (Pj).

Let us now prove that (Pi+1) ⇒ (Pi). We assume that (Pi+1) holds. Then there exists

Bi+1 = (Bi+1
k )0≤k≤[ε−1 ] and a continuous path hi+1 : [ti+1, 2] → RBi+1

0
1 (Mi+1) satisfying (1) and

(2). We have to prove that there exists Bi such that each connected component of (Mi, gi(ti))

is isotopic in RBi
0

1 to a GL-metric by an isotopy satisfying (2). On [ti, ti+1] we set hi(t) = gi(t)

as before. Then M ′
i+1 ⊃ Mi+1 and M ′

i+1 \Mi+1 is the union of the discarded components. The

components of (M ′
i+1, g

′
i+1) are now of two types: those of Mi+1, which satisfy (Pi+1) by the

induction assumption, and those of M ′
i+1 \Mi+1, which are ε-locally canonical for g′i+1. On Mi+1

we denote by g′i+1(t) an isotopy defined for t ∈ [ti+1, 2] and given by (Pi+1). On M ′
i+1 \Mi+1

we denote by g′i+1(t) the isotopy defined for t ∈ [ti+1, 2] and given by Lemma 5.6. As above we

obtain an isotopy h′i(t) on Mi defined for t ∈ [ti+1, 2], by applying Proposition 6.1 and a rescaling

to (M ′
j+1, g

′
j+1). We conclude again using Lemma 3.5.

This completes the proof of Theorem 7.1.

A Construction of metrics with uniformly positive scalar

curvature

We prove Theorem 1.3, which we restate for the convenience of the reader.

Theorem A.1. Let M be an oriented, connected 3-manifold. Then M admits a complete Rie-
mannian metric of uniformly positive scalar curvature and bounded geometry if and only if there
exists a finite collection F of spherical 3-manifolds such that M is a connected sum of members of
F .

Proof. The ‘only if’ part is proven in [BBM11], except that the conclusion there allows for factors
which are diffeomorphic to S2 × S1. Those factors can be removed by adding extra edges in the
graph.

We prove the ‘if’ part using the material of Section 2. Let (G,X) be a pair presenting M as a
connected sum. First we notice that the graph can be modified so that every vertex has degree at
most three: for each vertex v of degree d ≥ 4 (if any), replace v by a finite tree Tv with d leaves
and such that every vertex of Tv has degree at most 3; for each such v, fix an arbitrary vertex
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wv of Tv; then associate Xv to wv and S3 to the other vertices of Tv. The resulting manifold is
diffeomorphic to M .

Next we put on each Xv an arbitrary Riemannian metric with scalar curvature ≥ 1, geometry
bounded by some constant C and such that each Xv contains a disjoint union of three metric balls
of radius C−1/2. We fix a number ρ ∈ (0, C−1/2). In each Xv we choose a finite set of points xi
with cardinality the degree of v, and such that the metric balls of radius ρ around the xi’s are
pairwise disjoint. We remove those metric balls, getting a collection of punctured 3-manifolds.
Let Y be their disjoint union. Finally, we choose a neck Ne for each edge of G and glue Ne to
the corresponding boundary spheres of Y . The resulting manifold is diffeomorphic to M ; by our
generalisation of the Gromov-Lawson construction (see Subsection 2.2), it carries a complete metric
with uniformly positive scalar curvature and bounded geometry.

B Deforming metrics of positive scalar curvature on closed

manifolds

We explain how to prove Theorem 1.9, which we restate for convenience:

Theorem B.1. LetM be a closed, oriented 3-manifold such that R1(M) 6= ∅. Then R1(M)/Diff+(M)
is path-connected in the C∞ topology.

Proof. There are three differences between Theorem 1.2 and Theorem 1.9: (1) the manifold M
need not be connected; (2) we work with R1(M) as opposed toR+(M); (3) we work with Diff+(M)
instead of Diff(M).

Point (1) does not pose any problem since we can work with each component separately. Point
(2) is dealt with by the following trick:

Lemma B.2. Let g, g′ be two metrics in R1(M) which are isotopic in R+(M). Then g, g′ are
isotopic in R1(M).

Proof. Let gt be an isotopy from g to g′. Since M is compact, there exists σ > 0 such that gt ∈ Rσ

for all t. Thus Lemma 4.5 applies.

To deal with Point (3), we need to track down all places in the article [Mar12] where diffeo-
morphisms are introduced. Recall that the proof has two parts: show that any g ∈ R+(M) is
isotopic to a canonical metric; show that canonical metrics on M are isotopic modulo diffeomor-
phism. Canonical metrics are defined on pages 841 and 842: a metric g on M is canonical if it is
isometric to (M̂, ĝ), a GL-sum of a standard S3 ⊂ R4 and of spherical manifolds with constant
sectional curvature metrics (for some choice of base points and orthonormal bases). We can always

assume this isometry to be positive, orienting M̂ by the choice of the bases, reversing all bases if
necessary. The important point is that arguments on page 842, based on Milnor’s and De Rham’s
theorems, yield that any two canonical metrics on M lie in the same path-connected component
of the moduli space R+(M)/Diff+(M). For the second part of the proof, it is thus unnecessary to
control the sign of diffeomorphisms, if any.
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E-mail address: laurent.bessieres@math.u-bordeaux.fr
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