Tactics to Directly Map CNN graphs on Embedded FPGAs - Archive ouverte HAL
Article Dans Une Revue IEEE Embedded Systems Letters Année : 2017

Tactics to Directly Map CNN graphs on Embedded FPGAs

Kamel Abdelouahab
Maxime Pelcat
Jocelyn Sérot
Cédric Bourrasset
François Berry

Résumé

Deep Convolutional Neural Networks (CNNs) are the state-of-the-art in image classification. Since CNN feed forward propagation involves highly regular parallel computation, it benefits from a significant speed-up when running on fine grain parallel programmable logic devices. As a consequence, several studies have proposed FPGA-based accelerators for CNNs. However, because of the large computationalpower required by CNNs, none of the previous studies has proposed a direct mapping of the CNN onto the physical resources of an FPGA, allocating each processing actor to its own hardware instance.In this paper, we demonstrate the feasibility of the so called direct hardware mapping (DHM) and discuss several tactics we explore to make DHM usable in practice. As a proof of concept, we introduce the HADDOC2 open source tool, that automatically transforms a CNN description into a synthesizable hardware description with platform-independent direct hardware mapping.
Fichier principal
Vignette du fichier
main.pdf (214.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01626462 , version 1 (16-11-2017)

Identifiants

Citer

Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, Cédric Bourrasset, François Berry. Tactics to Directly Map CNN graphs on Embedded FPGAs. IEEE Embedded Systems Letters, 2017, 9 (4), pp.113 - 116. ⟨10.1109/LES.2017.2743247⟩. ⟨hal-01626462⟩
367 Consultations
1000 Téléchargements

Altmetric

Partager

More