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ABSTRACT

Deep Convolutional Neural Networks (CNNs) are the state-of-the-art in image
classification. Since CNN feed forward propagation involves highly regular paral-
lel computation, it benefits from a significant speed-up when running on fine grain
parallel programmable logic devices. As a consequence, several studies have pro-
posed FPGA-based accelerators for CNNs. However, because of the large com-
putational power required by CNNs, none of the previous studies has proposed a
direct mapping of the CNN onto the physical resources of an FPGA, allocating
each processing actor to its own hardware instance.

In this paper, we demonstrate the feasibility of the so called direct hardware map-
ping (DHM) and discuss several tactics we explore to make DHM usable in prac-
tice. As a proof of concept, we introduce the HADDOC2 open source tool, that
automatically transforms a CNN description into a synthesizable hardware de-
scription with platform-independent direct hardware mapping1.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) [2] have become a de-facto standard for increasing the
robustness and accuracy of machine vision systems. However, this accuracy comes at the price of
a high computational cost. As a result, implementing CNNs on embedded devices with real-time
constraints is a challenge. A solution to this challenge is to take advantage of the massive fine
grain parallelism offered by embedded Field-Programmable Gate Arrays (FPGAs) and benefit from
the extensive concurrency exhibited by CNN-based algorithms. By embedded FPGAs, we refer to
devices with limited power consumption and cost, typically under 20W and 300$. When porting
a CNN to an embedded FPGA, the problem boils down to finding an efficient mapping between
the computational model of the CNN and the execution model supported by the FPGA. Based on
works related to the implementation of real-time vision applications on FPGA-powered embedded
platforms [3], we advocate the use of a dataflow model to solve this mapping problem. In this
approach, a CNN algorithm is described as a graph of dataflow actors exchanging data through
unidirectional channels and this dataflow graph is statically and physically mapped onto the target
FPGA using a library of pre-defined computing elements implementing actors.

In the sequel, we demonstrate the feasibility of the Direct Hardware Mapping (DHM) approach
for implementing CNN-based applications onto embedded FPGAs. DHM associates each CNN
processing entity to private resources, maximizing parallelism. To support this demonstration, we
introduce HADDOC2, a framework that provides a fully automated hardware generation for CNNs
using DHM. The HADDOC2 tool is compatible with the Caffe deep learning framework [4] and
generates platform-independent VHDL synthesizable code.

The paper is organized as follows. Section 2 reviews state-of-the-art implementations of CNNs
on FPGAs. Section 3 recalls the main features of CNNs from a computational point of view, fo-
cusing on parallelism issues. Section 4 describes the DHM approach and how it is supported by

1This is a pre-print version. Please refer to the original paper in [1]
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the HADDOC2 framework. Section 5 presents an assessment of the efficiency of the approach, re-
porting performance and resource utilization of DHMs-based implementations for three CNNs, and
Section 6 concludes the paper.

2 RELATED WORK

Several studies leverage on FPGA computational power to implement the feed-forward propagation
of CNNs. A complete review of these studies can be found in [5]. In most approaches, CNN-based
applications are implemented by mapping a limited subset of processing elements onto the target
device, multiplexing in time the processing elements and processing data in an SIMD fashion. This
is the case for instance in [6] where authors describe a CNN accelerator implemented on a Zynq
XC706 board.

The dataflow-based implementation of CNNs is investigated in [7] where authors describe Neu-
flow, an acceleration engine for CNNs relying on a dataflow execution model. The CNN graph is
transformed into a set of dataflow instructions, where each instruction is described as a hardware
configuration of 2D-processing elements called Processing tiles (PTs). The execution of the graph
is carried out by sequencing the instructions on an FPGA.

The previously evoked approaches require an external memory to store intermediate results, which
in turn, even with the help of a DMA, limits the final speedup. The study in [8] features a partitioning
of the CNN graph with one bit-stream per subgraph in a way that only on-chip memory is needed to
store intermediate results. This however requires the reconfiguration of the FPGA whenever data has
to enter a different subgraph, which adds a substantial reconfiguration time overhead. By contrast,
the DHM approach introduced in the present paper performs all processing on the fly and does not
require any external memory to store intermediate results. Throughput is therefore not influenced
by off-chip memory bandwidth.

3 CNN COMPUTATION

A typical CNN structure performs a succession of convolutions interspersed with sub-sampling lay-
ers. The last layers of a CNN are fully connected layers performing classification. Convolutional
layers are the most computationally intensive layers and are commonly responsible for more than
90% of the CNN execution time [9]. As a consequence, we focus in this paper on the implementation
of convolutional layers.

A convolutional layer (l) extracts N feature maps from C input channels by performing N convo-
lutions of size K × K on each input. This filtering is followed by the application of a non-linear
activation function act and a bias term bn to each set of features. As shown in equation 1, N × C
convolutions (resulting in N × C ×K ×K multiplications) are required to process a given layer.

∀l =1 : L (Number of layers)

∀n = 1 : N (l) (Number of output feature maps)

f (l)
n

= act



b(l)
n

+

C
(l)

∑

c=1

conv(φ(l)
c

,w(l)
nc

)



 (1)

where f
(l)
n is the nth output feature map of layer (l), φ

(l)
c is the cth input feature map and w

(l)
nc is a

pre-learned filter.

The computation described in Equation 1 exhibits four sources of concurrency. First, CNNs have a
feed-forward hierarchical structure consisting of a succession of data-dependent layers. Layers can
therefore be executed in a pipelined fashion by launching layer (l) before ending the execution of
layer (l−1). Second, each neuron of a layer can be executed independently from the others, meaning

that each of theN (l) element of equation 1 can be computed in parallel. Third, all of the convolutions
performed by a single neuron can also be evaluated simultaneously by computing concurrently the

C(l) elements of equation 1. Finally, each 2D image convolution can be implemented in a pipelined
fashion [10] computing the K ×K multiplications concurrently.
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4 DIRECT HARDWARE MAPPING OF CNNS

A CNN can be modeled by a dataflow process network (DPN) where nodes correspond to processing
actors and edges correspond to communication channels. Each actor follows a purely data-driven
execution model where execution (firing) is triggered by the availability of input operands [11]. The
DHM approach consists of physically mapping the whole graph of actors onto the target device.
Each actor then becomes a computing unit with its specific instance on the FPGA and each edge
becomes a signal.

This approach fully exploits CNN concurrency. All neurons in a layer are mapped on the device to
take advantage of inter-neuron parallelism (Fig. 1-a). In neurons, each convolution is mapped sep-
arately (Fig. 1-b) and finally, within a convolution engine, each multiplier is instantiated separately
(Fig 1-c). As an example, Fig. 2 illustrates how a convolution layer C1 (C = 3, N = 5,K = 3) ex-
tracts 5 features from a 3-feature input pixel flow. In this example, 15 convolutions and 5 activation
blocks are mapped onto the FPGA as a result of the layer graph transformation, which corresponds
to 135 multiplications, 20 sums and 5 activations. DHM of pooling layers is also performed but
lowest-level implementation elements are kept out of the scope of this paper.

φ0
φ1
...
φC

Figure 1: The 3 levels of DHM use on CNN entities: (a) in the convolution layers, (b) in the neurons,
(c) in the convolution engines.

The direct hardware mapping approach exemplified above makes external memory accesses unnec-
essary, while classical FPGA implementations store intermediate results or parameters on external
memory. The processing is then performed on-the-fly on streams of feature maps. Moreover, due
to the fully pipelined execution model, the global throughput is only limited by the maximum clock
frequency.

These advantages come at the cost of a high resource consumption since the whole graph has to be
mapped onto the physical resources of the FPGA. This resource consumption could make DHM
impractical. It is therefore crucial for DHM to explore tactics that efficiently translate CNN actors
into hardware. The most important issues to solve are those related to the representation of numbers
and the implementation of multiplications.

4.1 APPROXIMATE FIXED-POINT DATA REPRESENTATIONS

Several studies have demonstrated that CNNs, and more generally deep learning applications,
usually tolerate approximate computing with short fixed-point arithmetic. Frameworks such as
Ristretto [12] fine-tune a CNN data representation to support fixed-point numerical representations
with variable data lengths. The DHM approach advocated in this paper takes advantage of data and
parameter quantization to reduce the amount of hardware resources by first inferring the minimal
required precision and then deriving the hardware resources that exactly match this precision.

4.2 IMPLEMENTING MULTIPLICATIONS WITH LOGIC ELEMENTS

Convolutions require many multiplications. If these multiplications are implemented using hard-
wired Digital Signal Processing (DSP) blocks within the target FPGA, they become the bottleneck
limiting the size of the implemented CNN. For instance, the second layer of the LeNet5 network [2]
(C = 6, N = 16,K = 5) requires 2400 multipliers, exceeding the number of multipliers provided
by the DSP blocks of most FPGAs, and especially of embedded FPGAs. We overcome this prob-
lem by systematically forcing the synthesis tool to implement multiplications with logical elements
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Figure 2: Applying the 3 levels of DHM (Fig. 1) to a convolutional layer C1 (N=5, C=3, K=3): 15
separate convolution engines (135 Multipliers and 15 adders) plus 5 adders and 5 activation blocks
are required to process the fully parallel layer (bias omitted).

instead of DSP blocks, leading the resulting implementations to rely on AND gates and trees of
half-adders [13].

In addition, we take advantage of the fact that the convolution kernels – and hence one operand of
each multiplication – are constants derived from an offline training stage. Multipliers can thus be
specialized to their constants. While this approach limits the flexibility of the system because it
requires to re-synthesize the VHDL design whenever parameters values are changed, it delegates to
the synthesis tool the task to perform low-level area and performance optimization. More particu-
larly, multiplications by 0 (resp 1) are removed (resp. replaced by a simple signal connection) and
multiplications by a power of 2 are transformed into shift registers.

4.3 AUTOMATED HARDWARE GENERATION WITH HADDOC2

The HADDOC2 framework is a set of tools built upon the DHM principle and upon the optimization
tactics described in previous section. It generates a platform-independent hardware description of
a CNN from a Caffe model [4]. CNN layers in HADDOC2 are described using a small number
of basic predefined actors written in structural VHDL. These actors follow a dataflow execution
semantics. The output can be synthesized for any FPGA device with tools supporting VHDL 93.
The HADDOC2 framework and the library of CNN IP-cores supporting the DHM approach are
open-source and available2.

5 EXPERIMENTAL RESULTS WITH HADDOC2

As proofs of concept, FPGA-based accelerators for three benchmark CNNs are implemented with
HADDOC2: LeNet5 [2], SVHN [14] and CIFAR10 [15]. Table 1 details the topology of these CNNs
where mpool refers to the pooling layer that reduces the dimensionality of each feature map and
tanh is the hyperbolic tangent activation function. The Cifar10 and SVHN CNNs share the same
topology with different kernel values, which is useful to study the impact of kernel proportions on a
DHM-based implementation. For each network, the fixed-point representation is chosen to respect
the classification accuracy, as a result of an exploration shown in Fig. 3. The study of quantization
effects on CNNs is beyond the scope of this paper and can be found, for instance, in [16, 12]. In our
case, a 3-bit representation is chosen for the LeNet5 network and a 6-bit representation for SVHN

2https://github.com/KamelAbdelouahab/haddoc2.
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and CIFAR102. The shares of its zero-valued parameters, one-valued parameters and power-of-two-
valued parameters are evaluated and reported in table 1. They represent, by far, more than 90% of
the parameters in all cases.
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Figure 3: Evolution of classification accuracy vs bit-width for the studied CNNs. The dashed lines
refers to accuracy of the baseline 32-bits floating point model.

Table 1: Topology of the convolutional layers of the studied CNNs.
LeNet5 [2] Cifar10 [15] SVHN [14]

Input Patches 28 x 28 32 x 32 x 3 32 x 32 x3

Layer parameters N C K N C K N C K

conv1+mpool+tanh 20 1 5 32 3 5 32 3 5
conv2+mpool+tanh 50 20 5 32 32 5 32 32 5
conv3+mpool+tanh − − − 64 32 5 64 32 5

accuracy float (%) 98.96 76.63 87.54
selected bit-width 3 6 6
acc. bit-width (%) 98.32 73.05 86.03

zero parameters(%) 88.59 33.78 37.14
one parameters(%) 6.31 45.32 46.50
pow2 parameters(%) 0.05 16.40 13.62
other (%) 5.05 4.50 2.74

In order to illustrate the impact of the developed tactics, Table 2 reports post-fitting results of a LeNet5 accel-
erator with a 5-bit precision on an embedded Intel Cyclone V 5CGXFC9E7 device, using 3 implementation
strategies. In the first result, only DSP blocks are used to map all CNN multiplications. The resulting hardware
requires 72× the available resources of the device. The second case features an implementation of multiplica-
tion based on logic elements and requires 3.8× the available logic. Using tailored multipliers reduces resources
by a factor of 8.6×, fitting the CNN accelerator onto an Intel Cyclone V embedded FPGA.

Tables 3-a and 3-b respectively detail post-fitting results on two embedded FPGA platforms: the Intel Cy-
clone V 5CGXFC9E7 and the Xilinx Kintex7 XC7Z045FBG (using respectively Intel Quartus 16.1 and Xilinx
Vivaldo 2016.4 synthetizers). To the best of our knowledge, these numbers are the first to demonstrate the appli-
cability of a DHM-based approach for the implementation of CNNs on embedded FPGAs. The three hardware
accelerators fit onto the embedded devices with no off-chip memory requirement. The reported memory foot-
print corresponds to line buffers used by dataflow-based convolution engines [10] and both synthesis tools
instantiate LUT-based memory blocks to implement these buffers. As expected when using DHM, the logic
utilization in the FPGA grows with the size of the CNN. In addition, the proportion of null kernels affects the
amount of logic needed to map a CNN graph.

Finally, table 4 compares Haddoc2 performance to implementations on FPGA, GPU and ASIC. For the Cifar10
CNN, we find that a direct hardware mapping approach grants ×2.63 higher throughput on the same device

2Similarly to [12], a fine tuning of the CNN parameters has been performed after selecting the bit-width,
which increases the classification accuracy of the quantized CNN.
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when compared to fpgaConvNet, the state-of-the-art framework for mapping CNNs on FPGAs. For LeNet5, a
×1.28 acceleration is reported which corresponds to a classification rate of 64.42 HD images/sec with a 3-scale
pyramid. The GPU platform delivers the best performance in terms of computational throughput but the price
is a high power consumption while ASIC technology gives the best throughput per Watt trade-off at the price of
lower reconfigurability and higher production costs. For deeper CNN implementations, such as in [6], DHM is
infeasible on current embedded FPGAs because the Logic Elements required to derive the accelerators exceed
the available hardware resources.

However, and given the recent improvements of Binary Neural Networks (BNNs) –reported for instance in
FINN [17]–, the implementation of deeper CNNs can be addressed by leveraging on BNNs. BNNs involve a
rescheduling of the CNN graph as well as a retraining the network to perform operations using a single bit.

Table 2: Resource utilization by a DHM LeNet5 CNN
with different implementations strategies for multipliers.

DSP-based LE-based LE-based + const.
Logic Usage (ALM) NA 433500 (381%) 50452 (44%)
DSP Block usage 24480 (7159 %) 0 (0%) 0 (0%)

Table 3: Resource Utilization of the three hardware accelerators: a- an Intel Cyclone V FPGA, b- a
Xilinx Kintex 7 FPGA.

LeNet5 [2] Cifar10 [15] SVHN [14]

a

Logic Elements (ALMs) 8067 (7%) 51276 (45%) 39513 (35%)
DSP Blocks 0 (0 %) 0 (0%) 0 (0%)
Block Memory Bits 176 (1%) 15808 (1%) 10878 (1%)
Frequency 65.71 MHz 63.89 MHz 63.96 MHz

b

Slices 25031 (11%) 172219 (79%) 136675 (63%)
DSP Blocks 0 (0%) 0 (0%) 0 (0%)
LUTs as Memory 252 (1%) 1458 (2%) 1552 (1%)
Frequency 59.37 MHz 54.17 MHz 54.49 MHz

Table 4: Comparison to state-of-the-art implementations
Publication Workload Throughput Platform

FPGA

Haddoc2
3.8 Mop 318.48 Gop/s1 Cyclone V
24 Mop 515.78 Gop/s1 Cyclone V

24.8 Mop 437.30 Gop/s1 Zynq XC706
fpgaConvNet

[8]
3.8 Mop 185.81 Gop/s1 Zynq XC706
24.8 Mop 166.16 Gop/s1 Zynq XC706

Qiu et al. [6] 30.76 Gop 187.80 Gop/s1 Zynq ZC706
FINN [17] 112.5 Mop 2500 Gop/s1 Zynq ZC706

GPU CudNN R3 1333 Mop 6343 Gop/s Titan X

ASIC
Yoda NN

[18]
24.8 Mop 525.4 Gop/s UMC 65 nm
23.4 Mop 454.4 Gop/s UMC 65 nm

NeuFlow [7] 350 Mop 1280 Gop/s IBM 45nm SOI

6 CONCLUSION AND FUTURE WORK

This paper has investigated the feasibility of direct hardware mapping (DHM) for the implemen-
tation of FPGA-based CNN accelerators. We have demonstrated that current embedded FPGAs
provide enough hardware resources to support this approach. To demonstrate DHM, the HADDOC2
tool has been introduced and used to automatically generate platform-independent CNN hardware
accelerators from high level CNN descriptions. Tactics are presented for optimizing the area and
resource utilization of arithmetic blocks. DHM opens new opportunities in terms of hardware imple-
mentations of CNNs and can be extended to ASIC technologies as well as Binary Neural Networks.

1Performance of the feature extractor
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