Coupling stochastic EM and Approximate Bayesian computation for parameter inference in state-space models - Archive ouverte HAL
Article Dans Une Revue Computational Statistics Année : 2018

Coupling stochastic EM and Approximate Bayesian computation for parameter inference in state-space models

Résumé

We study the class of state-space models (or hidden Markov models) and perform maximum likelihood inference on the model parameters. We consider a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function with the novelty of using approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system and this is achieved using ABC-SMC, that is we used an approximate sequential Monte Carlo (SMC) sampler for the hidden state. Three simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation, finally a stochastic volatility model. In our examples, ten iterations of our SAEM-ABC-SMC strategy were enough to return sensible parameter estimates. Comparisons with results using SAEM coupled with a standard, non-ABC, SMC sampler show that the ABC algorithm can be calibrated to return accurate solutions.
Fichier principal
Vignette du fichier
1512.04831.pdf (1.8 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01623737 , version 1 (26-10-2017)
hal-01623737 , version 2 (08-12-2017)

Identifiants

Citer

Umberto Picchini, Adeline Samson. Coupling stochastic EM and Approximate Bayesian computation for parameter inference in state-space models. Computational Statistics, 2018, 33 (1), pp.179-212. ⟨10.1007/s00180-017-0770-y⟩. ⟨hal-01623737v2⟩
433 Consultations
181 Téléchargements

Altmetric

Partager

More