Scaling limit of dynamical percolation on critical Erdös-Rényi random graphs - Archive ouverte HAL
Article Dans Une Revue The Annals of Probability Année : 2021

Scaling limit of dynamical percolation on critical Erdös-Rényi random graphs

Raphaël Rossignol

Résumé

Consider a critical Erdös-Rényi random graph: $n$ is the number of vertices, each one of the $\binom{n}{2}$ possible edges is kept in the graph independently from the others with probability $n^{−1}$ + $\lambda n^{−4/3}$ , $\lambda$ being a fixed real number. When $n$ goes to infinity, Addario-Berry, Broutin and Goldschmidt have shown that the collection of connected components, viewed as suitably normalized measured compact metric spaces, converges in distribution to a continuous limit $G_\lambda$ made of random real graphs. In this paper, we consider notably the dynamical percolation on critical Erdös-Rényi random graphs. To each pair of vertices is attached a Poisson process of intensity $n^{−1/3}$, and every time it rings, one resamples the corresponding edge. Under this process, the collection of connected components undergoes coalescence and fragmentation. We prove that this process converges in distribution, as $n$ goes to infinity, towards a fragmentation-coalescence process on the continuous limit $G_\lambda$. We also prove convergence of discrete coalescence and fragmentation processes and provide Feller-type properties associated to fragmentation and coalescence.
Fichier principal
Vignette du fichier
Dynamical_Percolation_hal_rev.pdf (965.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01623055 , version 1 (25-10-2017)
hal-01623055 , version 2 (29-10-2017)
hal-01623055 , version 3 (24-06-2018)
hal-01623055 , version 4 (11-02-2020)

Identifiants

Citer

Raphaël Rossignol. Scaling limit of dynamical percolation on critical Erdös-Rényi random graphs. The Annals of Probability, 2021, 49 (1), pp.322-399. ⟨10.1214/20-AOP1472⟩. ⟨hal-01623055v4⟩
139 Consultations
196 Téléchargements

Altmetric

Partager

More