Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces - Archive ouverte HAL
Article Dans Une Revue Mathematics of Control, Signals, and Systems Année : 2017

Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces

Résumé

This work studies the influence of some constraints on a stabilizing feedback law. It is considered an abstract nonlinear control system for which we assume that there exists a linear feedback law that makes the origin of the closed-loop system globally asymptotically stable. This controller is then modified via a cone-bounded nonlinearity. A well-posedness and a stability theorems are stated. The first theorem is proved thanks to the Schauder fixed-point theorem, the second one with an infinite-dimensional version of LaSalle's Invariance Principle. These results are illustrated on a linear Korteweg-de Vries equation by some simulations and on a nonlinear heat equation.
Fichier principal
Vignette du fichier
mcss_resent.pdf (738 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01620024 , version 1 (20-10-2017)

Identifiants

Citer

Swann Marx, Vincent Andrieu, Christophe Prieur. Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces. Mathematics of Control, Signals, and Systems, 2017, 29 (4), pp.18. ⟨10.1007/s00498-017-0205-x⟩. ⟨hal-01620024⟩
283 Consultations
525 Téléchargements

Altmetric

Partager

More