On the critical parameters of the q ≥ 4 random-cluster model on isoradial graphs - Archive ouverte HAL
Article Dans Une Revue Journal of Physics A: Mathematical and Theoretical Année : 2015

On the critical parameters of the q ≥ 4 random-cluster model on isoradial graphs

Résumé

The critical surface for random-cluster model with cluster-weight q ≥ 4 on iso-radial graphs is identified using parafermionic observables. Correlations are also shown to decay exponentially fast in the subcritical regime. While this result is restricted to random-cluster models with q ≥ 4, it extends the recent theorem of [6] to a large class of planar graphs. In particular, the anisotropic random-cluster model on the square lattice is shown to be critical if pvp h (1−pv)(1−p h) = q, where p v and p h denote the horizontal and vertical edge-weights respectively. We also provide consequences for Potts models.
Fichier principal
Vignette du fichier
BDS_largeq.pdf (616.1 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01618594 , version 1 (18-10-2017)

Identifiants

Citer

Vincent Beffara, H Duminil-Copin, Stanislas Smirnov. On the critical parameters of the q ≥ 4 random-cluster model on isoradial graphs. Journal of Physics A: Mathematical and Theoretical, 2015, 48, pp.484003. ⟨10.1088/1751-8113/48/48/484003⟩. ⟨hal-01618594⟩
61 Consultations
99 Téléchargements

Altmetric

Partager

More