Analytic wavelets for multivariate time series analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Analytic wavelets for multivariate time series analysis

Résumé

Many applications fields deal with multivariate long-memory time series. A challenge is to estimate the long-memory properties together with the coupling between the time series. Real wavelets procedures present some limitations due to the presence of phase phenomenons. A perspective is to use analytic wavelets to recover jointly long-memory properties, modulus of long-run covariance between time series and phases. Approximate wavelets Hilbert pairs of Selesnick (2002) fullfilled some of the required properties. As an extension of Selesnick (2002)’s work, we present some results about existence and quality of these approximately analytic wavelets.
Fichier principal
Vignette du fichier
AnalyticWavelets_spie2017.pdf (476.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01618447 , version 1 (20-03-2019)

Identifiants

Citer

Irène Gannaz, Sophie Achard, Marianne Clausel, François Roueff. Analytic wavelets for multivariate time series analysis. SPIE Optical Engineering + Applications, Aug 2017, San Diego, Californie, United States. pp.1-8, ⟨10.1117/12.2272928⟩. ⟨hal-01618447⟩
485 Consultations
458 Téléchargements

Altmetric

Partager

More