Optimization of some eigenvalue problems with large drift - Archive ouverte HAL
Article Dans Une Revue Communications in Partial Differential Equations Année : 2018

Optimization of some eigenvalue problems with large drift

François Hamel
Luca Rossi
Emmanuel Russ

Résumé

This paper is concerned with eigenvalue problems for elliptic operators with large drifts in bounded domains under Dirichlet boundary conditions. We consider the minimal principal eigenvalue and the related principal eigenfunction in the class of drifts having a given, but large, pointwise upper bound. We show that, in the asymptotic limit of large drifts, the maximal points of the optimal principal eigenfunctions converge to the set of points maximizing the distance to the boundary of the domain. We also show the uniform asymptotic profile of these principal eigenfunctions and the direction of their gradients in neighborhoods of the boundary.
Fichier principal
Vignette du fichier
hrr.pdf (251.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01616365 , version 1 (13-10-2017)

Identifiants

Citer

François Hamel, Luca Rossi, Emmanuel Russ. Optimization of some eigenvalue problems with large drift. Communications in Partial Differential Equations, 2018, 43 (6), pp.945-964. ⟨10.1080/03605302.2018.1477801⟩. ⟨hal-01616365⟩
254 Consultations
181 Téléchargements

Altmetric

Partager

More