Random walk on random walks: higher dimensions - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2019

Random walk on random walks: higher dimensions

Résumé

We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels without the assumption of uniform ellipticity or nearest-neighbour jumps. Specifically, we obtain a strong law of large numbers, a functional central limit theorem and large deviation estimates for the position of the random walker under the annealed law in a high density regime. The main obstacle is the intrinsic lack of monotonicity in higher-dimensional, non-nearest neighbour settings. Here we develop more general renormalization and renewal schemes that allow us to overcome this issue. As a second application of our methods, we provide an alternative proof of the ballistic behaviour of the front of (the discrete-time version of) the infection model introduced in [23].
Fichier principal
Vignette du fichier
manyRW.pdf (475.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01616312 , version 1 (13-10-2017)

Identifiants

Citer

Oriane Blondel, Marcelo R Hilário, Renato S dos Santos, Vladas Sidoravicius, Augusto Teixeira. Random walk on random walks: higher dimensions. Electronic Journal of Probability, 2019, 24, ⟨10.1214/19-EJP337⟩. ⟨hal-01616312⟩
294 Consultations
1032 Téléchargements

Altmetric

Partager

More