Fracture dynamics in implanted silicon
Résumé
Crack propagation in implanted silicon for thin layer transfer is experimentally studied. The crack propagation velocity as a function of split temperature is measured using a designed optical setup. Interferometric measurement of the gap opening is performed dynamically and shows an oscillatory crack "wake" with a typical wavelength in the centimetre range. The dynamics of this motion is modelled using beam elasticity and thermodynamics. The modelling demonstrates the key role of external atmospheric pressure during crack propagation. A quantification of the amount of gas trapped inside pre-existing microcracks and released during the fracture is made possible, with results consistent with previous studies. (C) 2015 AIP Publishing LLC.