SPICA and the Chemical Evolution of Galaxies: The Rise of Metals and Dust
J. A. Fernández-Ontiveros
(1)
,
L. Armus
,
M. Baes
(2)
,
J. Bernard-Salas
(3)
,
A. D. Bolatto
,
J. Braine
(4)
,
L. Ciesla
(5)
,
I. de Looze
(2)
,
E. Egami
(6)
,
J. Fischer
(7)
,
M. Giard
(8)
,
E. González-Alfonso
,
G. L. Granato
(9)
,
C. Gruppioni
(10)
,
M. Imanishi
,
D. Ishihara
,
H. Kaneda
,
S. Madden
(5)
,
M. Malkan
,
H. Matsuhara
,
M. Matsuura
(11)
,
T. Nagao
(12)
,
F. Najarro
,
T. Nakagawa
,
T. Onaka
,
S. Oyabu
(13)
,
M. Pereira-Santaella
,
I. Pérez Fournon
,
P. Roelfsema
,
P. Santini
(14)
,
L. Da Silva
(15)
,
J. -D. T. Smith
,
L. Spinoglio
(16)
,
F. van Der Tak
(17)
,
T. Wada
,
R. Wu
1
IAPS -
Istituto di Astrofisica e Planetologia Spaziali - INAF
2 UGENT - Universiteit Gent = Ghent University = Université de Gand
3 IAS - Institut d'astrophysique spatiale
4 FORMATION STELLAIRE 2017
5 AIM (UMR7158 / UMR_E_9005 / UM_112) - Astrophysique Interprétation Modélisation
6 Steward Observatory
7 Fraunhofer HHI - Fraunhofer Institute for Telecommunications - Heinrich Hertz Institute
8 LBBE - Laboratoire de Biométrie et Biologie Evolutive - UMR 5558
9 OAPD - INAF - Osservatorio Astronomico di Padova
10 OABO - INAF - Osservatorio Astronomico di Bologna
11 University of Manchester [Manchester]
12 RCSCE - Research Center for Space and Cosmic Evolution
13 Department of Environmental and Materials Engineering
14 OAR - INAF - Osservatorio Astronomico di Roma
15 Universidade Federal de Itajubá = Federal University of Itajubá
16 ARENA - Antarctic Research a European Network for Astrophysics
17 SRON - SRON Netherlands Institute for Space Research
2 UGENT - Universiteit Gent = Ghent University = Université de Gand
3 IAS - Institut d'astrophysique spatiale
4 FORMATION STELLAIRE 2017
5 AIM (UMR7158 / UMR_E_9005 / UM_112) - Astrophysique Interprétation Modélisation
6 Steward Observatory
7 Fraunhofer HHI - Fraunhofer Institute for Telecommunications - Heinrich Hertz Institute
8 LBBE - Laboratoire de Biométrie et Biologie Evolutive - UMR 5558
9 OAPD - INAF - Osservatorio Astronomico di Padova
10 OABO - INAF - Osservatorio Astronomico di Bologna
11 University of Manchester [Manchester]
12 RCSCE - Research Center for Space and Cosmic Evolution
13 Department of Environmental and Materials Engineering
14 OAR - INAF - Osservatorio Astronomico di Roma
15 Universidade Federal de Itajubá = Federal University of Itajubá
16 ARENA - Antarctic Research a European Network for Astrophysics
17 SRON - SRON Netherlands Institute for Space Research
L. Armus
- Fonction : Auteur
A. D. Bolatto
- Fonction : Auteur
L. Ciesla
- Fonction : Auteur
- PersonId : 749949
- IdHAL : laure-ciesla
- ORCID : 0000-0003-0541-2891
E. González-Alfonso
- Fonction : Auteur
M. Imanishi
- Fonction : Auteur
D. Ishihara
- Fonction : Auteur
H. Kaneda
- Fonction : Auteur
S. Madden
- Fonction : Auteur
- PersonId : 755702
- ORCID : 0000-0003-3229-2899
- IdRef : 088354660
M. Malkan
- Fonction : Auteur
H. Matsuhara
- Fonction : Auteur
F. Najarro
- Fonction : Auteur
T. Nakagawa
- Fonction : Auteur
T. Onaka
- Fonction : Auteur
M. Pereira-Santaella
- Fonction : Auteur
- PersonId : 777385
- ORCID : 0000-0002-4005-9619
I. Pérez Fournon
- Fonction : Auteur
P. Roelfsema
- Fonction : Auteur
L. Da Silva
- Fonction : Auteur
- PersonId : 988857
J. -D. T. Smith
- Fonction : Auteur
T. Wada
- Fonction : Auteur
R. Wu
- Fonction : Auteur
Résumé
The physical processes driving the chemical evolution of galaxies in the last $\sim 11\, \rm{Gyr}$ cannot be understood without directly probing the dust-obscured phase of star-forming galaxies and active galactic nuclei. This phase, hidden to optical tracers, represents the bulk of star formation and black hole accretion activity in galaxies at $1 < z < 3$. Spectroscopic observations with a cryogenic infrared (IR) observatory like SPICA will be sensitive enough to peer through the dust-obscured regions of galaxies and access the rest-frame mid- to far-IR range in galaxies at high-$z$. This wavelength range contains a unique suite of spectral lines and dust features that serve as proxies for the abundances of heavy elements and the dust composition, providing tracers with a feeble response to both extinction and temperature. In this work, we investigate how SPICA observations could be exploited to understand key aspects in the chemical evolution of galaxies: the assembly of nearby galaxies based on the spatial distribution of heavy element abundances, the global content of metals in galaxies reaching the knee of the luminosity function up to $z \sim 3$, and the dust composition of galaxies at high-$z$. Possible synergies with facilities available in the late 2020s are also discussed.